Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Jul 7;271(1546):1421–1426. doi: 10.1098/rspb.2004.2740

Use of Wolbachia to drive nuclear transgenes through insect populations.

Steven P Sinkins 1, H Charles J Godfray 1
PMCID: PMC1691734  PMID: 15306342

Abstract

Wolbachia is an inherited intracellular bacterium found in many insects of medical and economic importance. The ability of many strains to spread through populations using cytoplasmic incompatibility, involving sperm modification and rescue, provides a powerful mechanism for driving beneficial transgenes through insect populations, if such transgenes could be inserted into and expressed by Wolbachia. However, manipulating Wolbachia in this way has not yet been achieved. Here, we demonstrate theoretically an alternative mechanism whereby nuclear rather than cytoplasmic transgenes could be driven through populations, by linkage to a nuclear gene able to rescue modified sperm. The spread of a 'nuclear rescue construct' occurs as long as the Wolbachia show imperfect maternal transmission under natural conditions and/or imperfect rescue of modified sperm. The mechanism is most efficient when the target population is already infected with Wolbachia at high frequency, whether naturally or by the sequential release of Wolbachia-infected individuals and subsequently the nuclear rescue construct. The results provide a potentially powerful addition to the few insect transgene drive mechanisms that are available.

Full Text

The Full Text of this article is available as a PDF (154.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. L., O'Brochta D. A., Atkinson P. W., Levesque C. S. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2001 Sep;38(5):701–710. doi: 10.1603/0022-2585-38.5.701. [DOI] [PubMed] [Google Scholar]
  2. Alphey Luke, Beard C. Ben, Billingsley Peter, Coetzee Maureen, Crisanti Andrea, Curtis Chris, Eggleston Paul, Godfray Charles, Hemingway Janet, Jacobs-Lorena Marcelo. Malaria control with genetically manipulated insect vectors. Science. 2002 Oct 4;298(5591):119–121. doi: 10.1126/science.1078278. [DOI] [PubMed] [Google Scholar]
  3. Andersson Jan O., Roger Andrew J. Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers. Eukaryot Cell. 2002 Apr;1(2):304–310. doi: 10.1128/EC.1.2.304-310.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourtzis K., Dobson S. L., Braig H. R., O'Neill S. L. Rescuing Wolbachia have been overlooked. Nature. 1998 Feb 26;391(6670):852–853. doi: 10.1038/36017. [DOI] [PubMed] [Google Scholar]
  5. Braig H. R., Guzman H., Tesh R. B., O'Neill S. L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 1994 Feb 3;367(6462):453–455. doi: 10.1038/367453a0. [DOI] [PubMed] [Google Scholar]
  6. Burt Austin. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003 May 7;270(1518):921–928. doi: 10.1098/rspb.2002.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Catteruccia F., Nolan T., Loukeris T. G., Blass C., Savakis C., Kafatos F. C., Crisanti A. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000 Jun 22;405(6789):959–962. doi: 10.1038/35016096. [DOI] [PubMed] [Google Scholar]
  8. Coates C. J., Jasinskiene N., Miyashiro L., James A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3748–3751. doi: 10.1073/pnas.95.7.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dobson Stephen L., Marsland Eric J., Rattanadechakul Wanchai. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics. 2002 Mar;160(3):1087–1094. doi: 10.1093/genetics/160.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grossman G. L., Rafferty C. S., Clayton J. R., Stevens T. K., Mukabayire O., Benedict M. Q. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol. 2001 Dec;10(6):597–604. doi: 10.1046/j.0962-1075.2001.00299.x. [DOI] [PubMed] [Google Scholar]
  11. Hogg J. C., Hurd H. The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology. 1997 Apr;114(Pt 4):325–331. doi: 10.1017/s0031182096008542. [DOI] [PubMed] [Google Scholar]
  12. Ito Junitsu, Ghosh Anil, Moreira Luciano A., Wimmer Ernst A., Jacobs-Lorena Marcelo. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002 May 23;417(6887):452–455. doi: 10.1038/417452a. [DOI] [PubMed] [Google Scholar]
  13. Kokoza V., Ahmed A., Cho W. L., Jasinskiene N., James A. A., Raikhel A. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9144–9149. doi: 10.1073/pnas.160258197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kondo Natsuko, Ijichi Nobuyuki, Shimada Masakazu, Fukatsu Takema. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol. 2002 Feb;11(2):167–180. doi: 10.1046/j.0962-1083.2001.01432.x. [DOI] [PubMed] [Google Scholar]
  15. Merçot H., Poinsot D. . . . and discovered on Mount Kilimanjaro. Nature. 1998 Feb 26;391(6670):853–853. doi: 10.1038/36021. [DOI] [PubMed] [Google Scholar]
  16. Olson K. E., Higgs S., Gaines P. J., Powers A. M., Davis B. S., Kamrud K. I., Carlson J. O., Blair C. D., Beaty B. J. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science. 1996 May 10;272(5263):884–886. doi: 10.1126/science.272.5263.884. [DOI] [PubMed] [Google Scholar]
  17. Ribeiro J. M., Kidwell M. G. Transposable elements as population drive mechanisms: specification of critical parameter values. J Med Entomol. 1994 Jan;31(1):10–16. doi: 10.1093/jmedent/31.1.10. [DOI] [PubMed] [Google Scholar]
  18. Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Turelli M., Hoffmann A. A., McKechnie S. W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics. 1992 Nov;132(3):713–723. doi: 10.1093/genetics/132.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turelli M., Hoffmann A. A. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol. 1999 May;8(2):243–255. doi: 10.1046/j.1365-2583.1999.820243.x. [DOI] [PubMed] [Google Scholar]
  21. Veneti Zoe, Clark Michael E., Zabalou Sofia, Karr Timothy L., Savakis Charalambos, Bourtzis Kostas. Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics. 2003 Jun;164(2):545–552. doi: 10.1093/genetics/164.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wood R. J., Cook L. M., Hamilton A., Whitelaw A. Transporting the marker gene re (red eye) into a laboratory cage population of Aedes aegypti (Diptera: Culicidae), using meiotic drive at the MD locus. J Med Entomol. 1977 Dec 24;14(4):461–464. doi: 10.1093/jmedent/14.4.461. [DOI] [PubMed] [Google Scholar]
  23. de Lara Capurro M., Coleman J., Beerntsen B. T., Myles K. M., Olson K. E., Rocha E., Krettli A. U., James A. A. Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am J Trop Med Hyg. 2000 Apr;62(4):427–433. doi: 10.4269/ajtmh.2000.62.427. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES