Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Sep 22;271(1551):1881–1887. doi: 10.1098/rspb.2004.2803

Ice sheets promote speciation in boreal birds.

Jason T Weir 1, Dolph Schluter 1
PMCID: PMC1691815  PMID: 15347509

Abstract

The premise that Pleistocene ice ages played an important role in generating present-day species diversity has been challenged by genetic data indicating that most of the youngest terrestrial species on Earth coalesced long before major glacial advances. However, study has been biased towards faunas distributed at low latitudes that were not directly fragmented by advancing ice sheets. Using mitochondrial sequence divergence and a molecular clock, we compared the coalescence times of pairs of avian species belonging to superspecies complexes from the high-latitude boreal forest with those of sub-boreal and tropical avifaunas of the New World. Remarkably, all coalescence events in boreal superspecies date to the Pleistocene, providing direct evidence that speciation was commonly initiated during recent glacial periods. A pattern of endemism in boreal superspecies plausibly links the timing of divergence to the fragmentation of the boreal forest by ice sheets during the Mid- and Late Pleistocene. In contrast to the boreal superspecies, only 56% of sub-boreal and 46% of tropical superspecies members coalesced during the Pleistocene, suggesting that avifaunas directly fragmented by ice sheets experienced rapid rates of diversification, whereas those distributed farther south were affected to a lesser extent. One explanation for the absence of pre-Pleistocene superspecies in boreal avifaunas is that strong selection pressures operated in boreal refugia, causing superspecies members to achieve ecological differentiation at an accelerated rate.

Full Text

The Full Text of this article is available as a PDF (529.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Walker D., Johns G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc Biol Sci. 1998 Sep 22;265(1407):1707–1712. doi: 10.1098/rspb.1998.0492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avise J. C., Walker D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc Biol Sci. 1998 Mar 22;265(1395):457–463. doi: 10.1098/rspb.1998.0317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Demboski J. R., Cook J. A. Phylogeography of the dusky shrew, Sorex monticolus (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. Mol Ecol. 2001 May;10(5):1227–1240. doi: 10.1046/j.1365-294x.2001.01260.x. [DOI] [PubMed] [Google Scholar]
  4. Edwards S. V., Beerli P. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution. 2000 Dec;54(6):1839–1854. doi: 10.1111/j.0014-3820.2000.tb01231.x. [DOI] [PubMed] [Google Scholar]
  5. Fleischer R. C., McIntosh C. E., Tarr C. L. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol. 1998 Apr;7(4):533–545. doi: 10.1046/j.1365-294x.1998.00364.x. [DOI] [PubMed] [Google Scholar]
  6. Haffer J. Speciation in amazonian forest birds. Science. 1969 Jul 11;165(3889):131–137. doi: 10.1126/science.165.3889.131. [DOI] [PubMed] [Google Scholar]
  7. Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
  8. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  9. Near Thomas J., Kassler Todd W., Koppelman Jeffrey B., Dillman Casey B., Philipp David P. Speciation in North American black basses, Micropterus (Actinopterygii: Centrarchidae). Evolution. 2003 Jul;57(7):1610–1621. doi: 10.1111/j.0014-3820.2003.tb00368.x. [DOI] [PubMed] [Google Scholar]
  10. doi: 10.1098/rspb.1999.0691. [DOI] [PMC free article] [Google Scholar]
  11. doi: 10.1098/rspb.1999.0825. [DOI] [PMC free article] [Google Scholar]
  12. Rohwer S., Bermingham E., Wood C. Plumage and mitochondrial DNA haplotype variation across a moving hybrid zone. Evolution. 2001 Feb;55(2):405–422. doi: 10.1111/j.0014-3820.2001.tb01303.x. [DOI] [PubMed] [Google Scholar]
  13. Stone Karen D., Flynn Rodney W., Cook Joseph A. Post-glacial colonization of northwestern North America by the forest-associated American marten (Martes americana, Mammalia: Carnivora: Mustelidae). Mol Ecol. 2002 Oct;11(10):2049–2063. doi: 10.1046/j.1365-294x.2002.01596.x. [DOI] [PubMed] [Google Scholar]
  14. Taberlet P., Fumagalli L., Wust-Saucy A. G., Cosson J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998 Apr;7(4):453–464. doi: 10.1046/j.1365-294x.1998.00289.x. [DOI] [PubMed] [Google Scholar]
  15. Wooding S., Ward R. Phylogeography and pleistocene evolution in the North American black bear. Mol Biol Evol. 1997 Nov;14(11):1096–1105. doi: 10.1093/oxfordjournals.molbev.a025719. [DOI] [PubMed] [Google Scholar]
  16. Yang Z. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol. 1993 Nov;10(6):1396–1401. doi: 10.1093/oxfordjournals.molbev.a040082. [DOI] [PubMed] [Google Scholar]
  17. Zink R. M., Slowinski J. B. Evidence from molecular systematics for decreased avian diversification in the pleistocene Epoch. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5832–5835. doi: 10.1073/pnas.92.13.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zink Robert M., Klicka John, Barber Brian R. The tempo of avian diversification during the Quaternary. Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):215–220. doi: 10.1098/rstb.2003.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15347509s01.pdf (226.5KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES