Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 22;271(1557):2579–2582. doi: 10.1098/rspb.2004.2881

Handedness and situs inversus in primary ciliary dyskinesia.

I C McManus 1, N Martin 1, G F Stubbings 1, E M K Chung 1, H M Mitchison 1
PMCID: PMC1691902  PMID: 15615683

Abstract

...The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus.

Full Text

The Full Text of this article is available as a PDF (130.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Annett M., Alexander M. P. Atypical cerebral dominance: predictions and tests of the right shift theory. Neuropsychologia. 1996 Dec;34(12):1215–1227. doi: 10.1016/0028-3932(96)00048-6. [DOI] [PubMed] [Google Scholar]
  2. Aylsworth A. S. Clinical aspects of defects in the determination of laterality. Am J Med Genet. 2001 Jul 15;101(4):345–355. [PubMed] [Google Scholar]
  3. Brody S. L., Yan X. H., Wuerffel M. K., Song S. K., Shapiro S. D. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol. 2000 Jul;23(1):45–51. doi: 10.1165/ajrcmb.23.1.4070. [DOI] [PubMed] [Google Scholar]
  4. Brueckner M. Cilia propel the embryo in the right direction. Am J Med Genet. 2001 Jul 15;101(4):339–344. doi: 10.1002/1096-8628(20010715)101:4<339::aid-ajmg1442>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  5. Bush A., Cole P., Hariri M., Mackay I., Phillips G., O'Callaghan C., Wilson R., Warner J. O. Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J. 1998 Oct;12(4):982–988. doi: 10.1183/09031936.98.12040982. [DOI] [PubMed] [Google Scholar]
  6. Capdevila J., Vogan K. J., Tabin C. J., Izpisúa Belmonte J. C. Mechanisms of left-right determination in vertebrates. Cell. 2000 Mar 31;101(1):9–21. doi: 10.1016/S0092-8674(00)80619-4. [DOI] [PubMed] [Google Scholar]
  7. Concha M. L., Burdine R. D., Russell C., Schier A. F., Wilson S. W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron. 2000 Nov;28(2):399–409. doi: 10.1016/s0896-6273(00)00120-3. [DOI] [PubMed] [Google Scholar]
  8. Concha M. L., Wilson S. W. Asymmetry in the epithalamus of vertebrates. J Anat. 2001 Jul-Aug;199(Pt 1-2):63–84. doi: 10.1046/j.1469-7580.2001.19910063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Essner Jeffrey J., Vogan Kyle J., Wagner Molly K., Tabin Clifford J., Yost H. Joseph, Brueckner Martina. Conserved function for embryonic nodal cilia. Nature. 2002 Jul 4;418(6893):37–38. doi: 10.1038/418037a. [DOI] [PubMed] [Google Scholar]
  10. Gamse Joshua T., Thisse Christine, Thisse Bernard, Halpern Marnie E. The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development. 2003 Mar;130(6):1059–1068. doi: 10.1242/dev.00270. [DOI] [PubMed] [Google Scholar]
  11. Halpern Marnie E., Liang Jennifer O., Gamse Joshua T. Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci. 2003 Jun;26(6):308–313. doi: 10.1016/S0166-2236(03)00129-2. [DOI] [PubMed] [Google Scholar]
  12. Knecht S., Dräger B., Deppe M., Bobe L., Lohmann H., Flöel A., Ringelstein E. B., Henningsen H. Handedness and hemispheric language dominance in healthy humans. Brain. 2000 Dec;123(Pt 12):2512–2518. doi: 10.1093/brain/123.12.2512. [DOI] [PubMed] [Google Scholar]
  13. Levin M., Mercola M. The compulsion of chirality: toward an understanding of left-right asymmetry. Genes Dev. 1998 Mar 15;12(6):763–769. doi: 10.1101/gad.12.6.763. [DOI] [PubMed] [Google Scholar]
  14. Levin Michael. Motor protein control of ion flux is an early step in embryonic left-right asymmetry. Bioessays. 2003 Oct;25(10):1002–1010. doi: 10.1002/bies.10339. [DOI] [PubMed] [Google Scholar]
  15. McManus I. C., Drury Helena. The handedness of Leonardo da Vinci: a tale of the complexities of lateralisation. Brain Cogn. 2004 Jul;55(2):262–268. doi: 10.1016/j.bandc.2004.02.042. [DOI] [PubMed] [Google Scholar]
  16. Mercola M., Levin M. Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol. 2001;17:779–805. doi: 10.1146/annurev.cellbio.17.1.779. [DOI] [PubMed] [Google Scholar]
  17. Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y., Kido M., Hirokawa N. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998 Dec 11;95(6):829–837. doi: 10.1016/s0092-8674(00)81705-5. [DOI] [PubMed] [Google Scholar]
  18. Nonaka Shigenori, Shiratori Hidetaka, Saijoh Yukio, Hamada Hiroshi. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature. 2002 Jul 4;418(6893):96–99. doi: 10.1038/nature00849. [DOI] [PubMed] [Google Scholar]
  19. Okada Y., Nonaka S., Tanaka Y., Saijoh Y., Hamada H., Hirokawa N. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell. 1999 Oct;4(4):459–468. doi: 10.1016/s1097-2765(00)80197-5. [DOI] [PubMed] [Google Scholar]
  20. Olbrich Heike, Häffner Karsten, Kispert Andreas, Völkel Alexander, Volz Andreas, Sasmaz Gürsel, Reinhardt Richard, Hennig Steffen, Lehrach Hans, Konietzko Nikolaus. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002 Jan 14;30(2):143–144. doi: 10.1038/ng817. [DOI] [PubMed] [Google Scholar]
  21. Raya Angel, Kawakami Yasuhiko, Rodríguez-Esteban Concepción, Ibañes Marta, Rasskin-Gutman Diego, Rodríguez-León Joaquín, Büscher Dirk, Feijó José A., Izpisúa Belmonte Juan Carlos. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature. 2004 Jan 8;427(6970):121–128. doi: 10.1038/nature02190. [DOI] [PubMed] [Google Scholar]
  22. TORGERSEN J. Situs inversus, asymmetry, and twinning. Am J Hum Genet. 1950 Dec;2(4):361–370. [PMC free article] [PubMed] [Google Scholar]
  23. Tabin Clifford J., Vogan Kyle J. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 2003 Jan 1;17(1):1–6. doi: 10.1101/gad.1053803. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES