Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Sep 29;352(1359):1295–1302. doi: 10.1098/rstb.1997.0113

The surface glycoconjugates of trypanosomatid parasites.

M A Ferguson 1
PMCID: PMC1692025  PMID: 9355120

Abstract

Insect-transmitted protozoan parasites of the order Kinetoplastida, suborder Trypanosomatina, include Trypanosoma brucei (aetiological agent of African sleeping sickness), Trypanosoma cruzi (aetiological agent of Chagas' disease in South and Central America) and Leishmania spp. (aetiological agents of a variety of diseases throughout the tropics and sub-tropics). The structures of the most abundant cell-surface molecules of these organisms is reviewed and correlated with the different modes of parasitism of the three groups of parasites. The major surface molecules are all glycosylphosphatidylinositol (GPI)-anchored glycoproteins, such as the variant surface glycoproteins of T. brucei and the surface mucins of T. cruzi, or complex glycophospholipids, such as the lipophosphoglycans and glycoinositolphospholipids of the leishmanias. Significantly, all of the aforementioned structures share a motif of Man alpha 1-4GlcN alpha 1-6-myo-inositol-1-HPO4-lipid and can therefore be considered to be members of a GPI superfamily.

Full Text

The Full Text of this article is available as a PDF (196.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida I. C., Ferguson M. A., Schenkman S., Travassos L. R. Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas' disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J. 1994 Dec 15;304(Pt 3):793–802. doi: 10.1042/bj3040793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews N. W., Robbins E. S., Ley V., Hong K. S., Nussenzweig V. Developmentally regulated, phospholipase C-mediated release of the major surface glycoprotein of amastigotes of Trypanosoma cruzi. J Exp Med. 1988 Feb 1;167(2):300–314. doi: 10.1084/jem.167.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bahr V., Stierhof Y. D., Ilg T., Demar M., Quinten M., Overath P. Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol. 1993 Mar;58(1):107–121. doi: 10.1016/0166-6851(93)90095-f. [DOI] [PubMed] [Google Scholar]
  4. Blum M. L., Down J. A., Gurnett A. M., Carrington M., Turner M. J., Wiley D. C. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature. 1993 Apr 15;362(6421):603–609. doi: 10.1038/362603a0. [DOI] [PubMed] [Google Scholar]
  5. Brittingham A., Mosser D. M. Exploitation of the complement system by Leishmania promastigotes. Parasitol Today. 1996 Nov;12(11):444–447. doi: 10.1016/0169-4758(96)10067-3. [DOI] [PubMed] [Google Scholar]
  6. Carreira J. C., Jones C., Wait R., Previato J. O., Mendonça-Previato L. Structural variation in the glycoinositolphospholipids of different strains of Trypanosoma cruzi. Glycoconj J. 1996 Dec;13(6):955–966. doi: 10.1007/BF01053191. [DOI] [PubMed] [Google Scholar]
  7. Cross G. A. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays. 1996 Apr;18(4):283–291. doi: 10.1002/bies.950180406. [DOI] [PubMed] [Google Scholar]
  8. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  9. Di Noia J. M., Sánchez D. O., Frasch A. C. The protozoan Trypanosoma cruzi has a family of genes resembling the mucin genes of mammalian cells. J Biol Chem. 1995 Oct 13;270(41):24146–24149. doi: 10.1074/jbc.270.41.24146. [DOI] [PubMed] [Google Scholar]
  10. Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  11. Ferguson M. A., Murray P., Rutherford H., McConville M. J. A simple purification of procyclic acidic repetitive protein and demonstration of a sialylated glycosyl-phosphatidylinositol membrane anchor. Biochem J. 1993 Apr 1;291(Pt 1):51–55. doi: 10.1042/bj2910051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fernandes A. P., Nelson K., Beverley S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Field M. C., Menon A. K., Cross G. A. A glycosylphosphatidylinositol protein anchor from procyclic stage Trypanosoma brucei: lipid structure and biosynthesis. EMBO J. 1991 Oct;10(10):2731–2739. doi: 10.1002/j.1460-2075.1991.tb07821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green P. J., Feizi T., Stoll M. S., Thiel S., Prescott A., McConville M. J. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol. 1994 Aug;66(2):319–328. doi: 10.1016/0166-6851(94)90158-9. [DOI] [PubMed] [Google Scholar]
  15. Güther M. L., Ferguson M. A. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J. 1995 Jul 3;14(13):3080–3093. doi: 10.1002/j.1460-2075.1995.tb07311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heise N., de Almeida M. L., Ferguson M. A. Characterization of the lipid moiety of the glycosylphosphatidylinositol anchor of Trypanosoma cruzi 1G7-antigen. Mol Biochem Parasitol. 1995 Mar;70(1-2):71–84. doi: 10.1016/0166-6851(95)00009-p. [DOI] [PubMed] [Google Scholar]
  17. Homans S. W., Edge C. J., Ferguson M. A., Dwek R. A., Rademacher T. W. Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein. Biochemistry. 1989 Apr 4;28(7):2881–2887. doi: 10.1021/bi00433a020. [DOI] [PubMed] [Google Scholar]
  18. Ilg T., Overath P., Ferguson M. A., Rutherford T., Campbell D. G., McConville M. J. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem. 1994 Sep 30;269(39):24073–24081. [PubMed] [Google Scholar]
  19. Ilg T., Stierhof Y. D., Craik D., Simpson R., Handman E., Bacic A. Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites. J Biol Chem. 1996 Aug 30;271(35):21583–21596. doi: 10.1074/jbc.271.35.21583. [DOI] [PubMed] [Google Scholar]
  20. Maudlin I., Welburn S. C. Maturation of trypanosome infections in tsetse. Exp Parasitol. 1994 Sep;79(2):202–205. doi: 10.1006/expr.1994.1081. [DOI] [PubMed] [Google Scholar]
  21. McConville M. J., Blackwell J. M. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem. 1991 Aug 15;266(23):15170–15179. [PubMed] [Google Scholar]
  22. McConville M. J., Collidge T. A., Ferguson M. A., Schneider P. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J Biol Chem. 1993 Jul 25;268(21):15595–15604. [PubMed] [Google Scholar]
  23. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McConville M. J., Homans S. W., Thomas-Oates J. E., Dell A., Bacic A. Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990 May 5;265(13):7385–7394. [PubMed] [Google Scholar]
  25. McConville M. J., Schnur L. F., Jaffe C., Schneider P. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J. 1995 Sep 15;310(Pt 3):807–818. doi: 10.1042/bj3100807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moody S. F., Handman E., McConville M. J., Bacic A. The structure of Leishmania major amastigote lipophosphoglycan. J Biol Chem. 1993 Sep 5;268(25):18457–18466. [PubMed] [Google Scholar]
  27. Mowatt M. R., Clayton C. E. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol. 1988 Oct;8(10):4055–4062. doi: 10.1128/mcb.8.10.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pimenta P. F., Saraiva E. M., Rowton E., Modi G. B., Garraway L. A., Beverley S. M., Turco S. J., Sacks D. L. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9155–9159. doi: 10.1073/pnas.91.19.9155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pimenta P. F., Turco S. J., McConville M. J., Lawyer P. G., Perkins P. V., Sacks D. L. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992 Jun 26;256(5065):1812–1815. doi: 10.1126/science.1615326. [DOI] [PubMed] [Google Scholar]
  30. Previato J. O., Gorin P. A., Mazurek M., Xavier M. T., Fournet B., Wieruszesk J. M., Mendonça-Previato L. Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J Biol Chem. 1990 Feb 15;265(5):2518–2526. [PubMed] [Google Scholar]
  31. Previato J. O., Jones C., Gonçalves L. P., Wait R., Travassos L. R., Mendonça-Previato L. O-glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi. Biochem J. 1994 Jul 1;301(Pt 1):151–159. doi: 10.1042/bj3010151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Previato J. O., Jones C., Xavier M. T., Wait R., Travassos L. R., Parodi A. J., Mendonça-Previato L. Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J Biol Chem. 1995 Mar 31;270(13):7241–7250. doi: 10.1074/jbc.270.13.7241. [DOI] [PubMed] [Google Scholar]
  33. Previato J. O., Mendonça-Previato L., Jones C., Wait R., Fournet B. Structural characterization of a novel class of glycophosphosphingolipids from the protozoan Leptomonas samueli. J Biol Chem. 1992 Dec 5;267(34):24279–24286. [PubMed] [Google Scholar]
  34. Proudfoot L., Nikolaev A. V., Feng G. J., Wei W. Q., Ferguson M. A., Brimacombe J. S., Liew F. Y. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10984–10989. doi: 10.1073/pnas.93.20.10984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Proudfoot L., O'Donnell C. A., Liew F. Y. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995 Mar;25(3):745–750. doi: 10.1002/eji.1830250318. [DOI] [PubMed] [Google Scholar]
  36. Redman C. A., Schneider P., Mehlert A., Ferguson M. A. The glycoinositol-phospholipids of Phytomonas. Biochem J. 1995 Oct 15;311(Pt 2):495–503. doi: 10.1042/bj3110495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roditi I., Carrington M., Turner M. Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature. 1987 Jan 15;325(6101):272–274. doi: 10.1038/325272a0. [DOI] [PubMed] [Google Scholar]
  38. Roditi I., Schwarz H., Pearson T. W., Beecroft R. P., Liu M. K., Richardson J. P., Bühring H. J., Pleiss J., Bülow R., Williams R. O. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol. 1989 Feb;108(2):737–746. doi: 10.1083/jcb.108.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Routier F. H., da Silveira E. X., Wait R., Jones C., Previato J. O., Mendonça-Previato L. Chemical characterisation of glycosylinositolphospholipids of Herpetomonas samuelpessoai. Mol Biochem Parasitol. 1995 Jan;69(1):81–92. doi: 10.1016/0166-6851(94)00202-x. [DOI] [PubMed] [Google Scholar]
  40. Sacks D. L., Pimenta P. F., McConville M. J., Schneider P., Turco S. J. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med. 1995 Feb 1;181(2):685–697. doi: 10.1084/jem.181.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schenkman S., Eichinger D., Pereira M. E., Nussenzweig V. Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol. 1994;48:499–523. doi: 10.1146/annurev.mi.48.100194.002435. [DOI] [PubMed] [Google Scholar]
  42. Schenkman S., Ferguson M. A., Heise N., de Almeida M. L., Mortara R. A., Yoshida N. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Jun;59(2):293–303. doi: 10.1016/0166-6851(93)90227-o. [DOI] [PubMed] [Google Scholar]
  43. Schenkman S., Jiang M. S., Hart G. W., Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 1991 Jun 28;65(7):1117–1125. doi: 10.1016/0092-8674(91)90008-m. [DOI] [PubMed] [Google Scholar]
  44. Schneider P., Rosat J. P., Ransijn A., Ferguson M. A., McConville M. J. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochem J. 1993 Oct 15;295(Pt 2):555–564. doi: 10.1042/bj2950555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schneider P., Schnur L. F., Jaffe C. L., Ferguson M. A., McConville M. J. Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochem J. 1994 Dec 1;304(Pt 2):603–609. doi: 10.1042/bj3040603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schneider P., Treumann A., Milne K. G., McConville M. J., Zitzmann N., Ferguson M. A. Structural studies on a lipoarabinogalactan of Crithidia fasciculata. Biochem J. 1996 Feb 1;313(Pt 3):963–971. doi: 10.1042/bj3130963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Serrano A. A., Schenkman S., Yoshida N., Mehlert A., Richardson J. M., Ferguson M. A. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995 Nov 10;270(45):27244–27253. doi: 10.1074/jbc.270.45.27244. [DOI] [PubMed] [Google Scholar]
  48. Smith T. K., Cottaz S., Brimacombe J. S., Ferguson M. A. Substrate specificity of the dolichol phosphate mannose: glucosaminyl phosphatidylinositol alpha1-4-mannosyltransferase of the glycosylphosphatidylinositol biosynthetic pathway of African trypanosomes. J Biol Chem. 1996 Mar 15;271(11):6476–6482. doi: 10.1074/jbc.271.11.6476. [DOI] [PubMed] [Google Scholar]
  49. Teixeira S. M., Russell D. G., Kirchhoff L. V., Donelson J. E. A differentially expressed gene family encoding "amastin," a surface protein of Trypanosoma cruzi amastigotes. J Biol Chem. 1994 Aug 12;269(32):20509–20516. [PubMed] [Google Scholar]
  50. Treumann A., Zitzmann N., Hülsmeier A., Prescott A. R., Almond A., Sheehan J., Ferguson M. A. Structural characterisation of two forms of procyclic acidic repetitive protein expressed by procyclic forms of Trypanosoma brucei. J Mol Biol. 1997 Jun 20;269(4):529–547. doi: 10.1006/jmbi.1997.1066. [DOI] [PubMed] [Google Scholar]
  51. Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
  52. Vickerman K., Luckins A. G. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature. 1969 Dec 13;224(5224):1125–1126. doi: 10.1038/2241125a0. [DOI] [PubMed] [Google Scholar]
  53. Welburn S. C., Dale C., Ellis D., Beecroft R., Pearson T. W. Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ. 1996 Apr;3(2):229–236. [PubMed] [Google Scholar]
  54. Winter G., Fuchs M., McConville M. J., Stierhof Y. D., Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994 Sep;107(Pt 9):2471–2482. doi: 10.1242/jcs.107.9.2471. [DOI] [PubMed] [Google Scholar]
  55. Zamze S. E., Ashford D. A., Wooten E. W., Rademacher T. W., Dwek R. A. Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and type III variant surface glycoproteins. J Biol Chem. 1991 Oct 25;266(30):20244–20261. [PubMed] [Google Scholar]
  56. de Lederkremer R. M., Lima C. E., Ramirez M. I., Gonçalvez M. F., Colli W. Hexadecylpalmitoylglycerol or ceramide is linked to similar glycophosphoinositol anchor-like structures in Trypanosoma cruzi. Eur J Biochem. 1993 Dec 15;218(3):929–936. doi: 10.1111/j.1432-1033.1993.tb18449.x. [DOI] [PubMed] [Google Scholar]
  57. de Lederkremer R. M., Lima C., Ramirez M. I., Ferguson M. A., Homans S. W., Thomas-Oates J. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem. 1991 Dec 15;266(35):23670–23675. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES