Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Oct 29;352(1360):1449–1459. doi: 10.1098/rstb.1997.0131

A new view of hemineglect based on the response properties of parietal neurones.

A Pouget 1, T J Sejnowski 1
PMCID: PMC1692050  PMID: 9368933

Abstract

Lesion studies of the parietal cortex have led to a wide range of conclusions regarding the coordinate reference frame in which hemineglect is expressed. A model of spatial representation in the parietal cortex has recently been developed in which the position of an object is not encoded in a particular frame of reference, but instead involves neurones computing basis functions of sensory inputs. In this type of representation, a nonlinear sensorimotor transformation of an object is represented in a population of units having the response properties of neurones that are observed in the parietal cortex. A simulated lesion in a basis-function representation was found to replicate three of the most important aspects of hemineglect: (i) the model behaved like parietal patients in line-cancellation and line-bisection experiments; (ii) the deficit affected multiple frames of reference; and (iii) the deficit could be object-centred. These results support the basis-function hypothesis for spatial representations and provide a testable computational theory of hemineglect at the level of single cells.

Full Text

The Full Text of this article is available as a PDF (233.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. A., Asanuma C., Essick G., Siegel R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol. 1990 Jun 1;296(1):65–113. doi: 10.1002/cne.902960106. [DOI] [PubMed] [Google Scholar]
  2. Andersen R. A., Essick G. K., Siegel R. M. Encoding of spatial location by posterior parietal neurons. Science. 1985 Oct 25;230(4724):456–458. doi: 10.1126/science.4048942. [DOI] [PubMed] [Google Scholar]
  3. Arguin M., Bub D. N. Evidence for an independent stimulus-centered spatial reference frame from a case of visual hemineglect. Cortex. 1993 Jun;29(2):349–357. doi: 10.1016/s0010-9452(13)80188-8. [DOI] [PubMed] [Google Scholar]
  4. Bisiach E., Capitani E., Porta E. Two basic properties of space representation in the brain: evidence from unilateral neglect. J Neurol Neurosurg Psychiatry. 1985 Feb;48(2):141–144. doi: 10.1136/jnnp.48.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bisiach E., Luzzatti C., Perani D. Unilateral neglect, representational schema and consciousness. Brain. 1979 Sep;102(3):609–618. doi: 10.1093/brain/102.3.609. [DOI] [PubMed] [Google Scholar]
  6. Bisiach E., Luzzatti C. Unilateral neglect of representational space. Cortex. 1978 Mar;14(1):129–133. doi: 10.1016/s0010-9452(78)80016-1. [DOI] [PubMed] [Google Scholar]
  7. Bisiach E., Rusconi M. L., Peretti V. A., Vallar G. Challenging current accounts of unilateral neglect. Neuropsychologia. 1994 Nov;32(11):1431–1434. doi: 10.1016/0028-3932(94)00070-0. [DOI] [PubMed] [Google Scholar]
  8. Boussaoud D., Barth T. M., Wise S. P. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp Brain Res. 1993;93(3):423–434. doi: 10.1007/BF00229358. [DOI] [PubMed] [Google Scholar]
  9. Brotchie P. R., Andersen R. A., Snyder L. H., Goodman S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature. 1995 May 18;375(6528):232–235. doi: 10.1038/375232a0. [DOI] [PubMed] [Google Scholar]
  10. Burnett-Stuart G., Halligan P. W., Marshall J. C. A Newtonian model of perceptual distortion in visuo-spatial neglect. Neuroreport. 1991 May;2(5):255–257. doi: 10.1097/00001756-199105000-00010. [DOI] [PubMed] [Google Scholar]
  11. Calvanio R., Petrone P. N., Levine D. N. Left visual spatial neglect is both environment-centered and body-centered. Neurology. 1987 Jul;37(7):1179–1183. doi: 10.1212/wnl.37.7.1179. [DOI] [PubMed] [Google Scholar]
  12. Colby C. L., Duhamel J. R., Goldberg M. E. Oculocentric spatial representation in parietal cortex. Cereb Cortex. 1995 Sep-Oct;5(5):470–481. doi: 10.1093/cercor/5.5.470. [DOI] [PubMed] [Google Scholar]
  13. Colby C. L., Duhamel J. R., Goldberg M. E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol. 1993 Mar;69(3):902–914. doi: 10.1152/jn.1993.69.3.902. [DOI] [PubMed] [Google Scholar]
  14. Connor C. E., Gallant J. L., Preddie D. C., Van Essen D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996 Mar;75(3):1306–1308. doi: 10.1152/jn.1996.75.3.1306. [DOI] [PubMed] [Google Scholar]
  15. Driver J., Baylis G. C., Goodrich S. J., Rafal R. D. Axis-based neglect of visual shapes. Neuropsychologia. 1994 Nov;32(11):1353–1365. doi: 10.1016/0028-3932(94)00068-9. [DOI] [PubMed] [Google Scholar]
  16. Farah M. J., Brunn J. L., Wong A. B., Wallace M. A., Carpenter P. A. Frames of reference for allocating attention to space: evidence from the neglect syndrome. Neuropsychologia. 1990;28(4):335–347. doi: 10.1016/0028-3932(90)90060-2. [DOI] [PubMed] [Google Scholar]
  17. Fogassi L., Gallese V., di Pellegrino G., Fadiga L., Gentilucci M., Luppino G., Matelli M., Pedotti A., Rizzolatti G. Space coding by premotor cortex. Exp Brain Res. 1992;89(3):686–690. doi: 10.1007/BF00229894. [DOI] [PubMed] [Google Scholar]
  18. Galletti C., Battaglini P. P. Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J Neurosci. 1989 Apr;9(4):1112–1125. doi: 10.1523/JNEUROSCI.09-04-01112.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldberg M. E., Colby C. L., Duhamel J. R. Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb Symp Quant Biol. 1990;55:729–739. doi: 10.1101/sqb.1990.055.01.068. [DOI] [PubMed] [Google Scholar]
  20. Goodale M. A., Milner A. D. Separate visual pathways for perception and action. Trends Neurosci. 1992 Jan;15(1):20–25. doi: 10.1016/0166-2236(92)90344-8. [DOI] [PubMed] [Google Scholar]
  21. Graziano M. S., Yap G. S., Gross C. G. Coding of visual space by premotor neurons. Science. 1994 Nov 11;266(5187):1054–1057. doi: 10.1126/science.7973661. [DOI] [PubMed] [Google Scholar]
  22. Halligan P. W., Marshall J. C. Figural perception and parsing in visuo-spatial neglect. Neuroreport. 1994 Jan 31;5(5):537–539. doi: 10.1097/00001756-199401000-00001. [DOI] [PubMed] [Google Scholar]
  23. Halligan P. W., Marshall J. C. Line bisection in visuo-spatial neglect: disproof of a conjecture. Cortex. 1989 Sep;25(3):517–521. doi: 10.1016/s0010-9452(89)80066-8. [DOI] [PubMed] [Google Scholar]
  24. Husain M. Is visual neglect body-centric? J Neurol Neurosurg Psychiatry. 1995 Feb;58(2):262–263. doi: 10.1136/jnnp.58.2.262-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karnath H. O., Christ K., Hartje W. Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain. 1993 Apr;116(Pt 2):383–396. doi: 10.1093/brain/116.2.383. [DOI] [PubMed] [Google Scholar]
  26. Karnath H. O., Schenkel P., Fischer B. Trunk orientation as the determining factor of the 'contralateral' deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. Brain. 1991 Aug;114(Pt 4):1997–2014. doi: 10.1093/brain/114.4.1997. [DOI] [PubMed] [Google Scholar]
  27. Koch C., Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–227. [PubMed] [Google Scholar]
  28. Ladavas E. Is the hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? Brain. 1987 Feb;110(Pt 1):167–180. doi: 10.1093/brain/110.1.167. [DOI] [PubMed] [Google Scholar]
  29. Li W., Matin L. Differences in influence between pitched-from-vertical lines and slanted-from-frontal horizontal lines on egocentric localization. Percept Psychophys. 1995 Jan;57(1):71–83. doi: 10.3758/bf03211851. [DOI] [PubMed] [Google Scholar]
  30. Làdavas E., Del Pesce M., Provinciali L. Unilateral attention deficits and hemispheric asymmetries in the control of visual attention. Neuropsychologia. 1989;27(3):353–366. doi: 10.1016/0028-3932(89)90024-9. [DOI] [PubMed] [Google Scholar]
  31. Matin L., Li W. Multimodal basis for egocentric spatial localization and orientation. J Vestib Res. 1995 Nov-Dec;5(6):499–518. [PubMed] [Google Scholar]
  32. Olson C. R., Gettner S. N. Object-centered direction selectivity in the macaque supplementary eye field. Science. 1995 Aug 18;269(5226):985–988. doi: 10.1126/science.7638625. [DOI] [PubMed] [Google Scholar]
  33. Poggio T. A theory of how the brain might work. Cold Spring Harb Symp Quant Biol. 1990;55:899–910. doi: 10.1101/sqb.1990.055.01.084. [DOI] [PubMed] [Google Scholar]
  34. Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science. 1990 Feb 23;247(4945):978–982. doi: 10.1126/science.247.4945.978. [DOI] [PubMed] [Google Scholar]
  35. Salinas E., Abbott L. F. A model of multiplicative neural responses in parietal cortex. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11956–11961. doi: 10.1073/pnas.93.21.11956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Salinas E., Abbott L. F. Transfer of coded information from sensory to motor networks. J Neurosci. 1995 Oct;15(10):6461–6474. doi: 10.1523/JNEUROSCI.15-10-06461.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schlag-Rey M., Schlag J. Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol. 1984 Jun;51(6):1149–1174. doi: 10.1152/jn.1984.51.6.1149. [DOI] [PubMed] [Google Scholar]
  38. Tipper S. P., Behrmann M. Object-centered not scene-based visual neglect. J Exp Psychol Hum Percept Perform. 1996 Oct;22(5):1261–1278. doi: 10.1037//0096-1523.22.5.1261. [DOI] [PubMed] [Google Scholar]
  39. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  40. Van Opstal A. J., Hepp K., Suzuki Y., Henn V. Influence of eye position on activity in monkey superior colliculus. J Neurophysiol. 1995 Oct;74(4):1593–1610. doi: 10.1152/jn.1995.74.4.1593. [DOI] [PubMed] [Google Scholar]
  41. Zipser D., Andersen R. A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature. 1988 Feb 25;331(6158):679–684. doi: 10.1038/331679a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES