Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1997 Oct 29;352(1360):1535–1543. doi: 10.1098/rstb.1997.0140

Robotic and neuronal simulation of the hippocampus and rat navigation.

N Burgess 1, J G Donnett 1, K J Jeffery 1, J O'Keefe 1
PMCID: PMC1692051  PMID: 9368942

Abstract

The properties of hippocampal place cells are reviewed, with particular attention to the nature of the internal and external signals that support their firing. A neuronal simulation of the firing of place cells in open-field environments of varying shape is presented. This simulation is coupled with an existing model of how place-cell firing can be used to drive navigation, and is tested by implementation as a miniature mobile robot. The sensors on the robot provide visual, odometric and short-range proximity data, which are combined to estimate the distance of the walls of the enclosure from the robot and the robot's current heading direction. These inputs drive the hippocampal simulation, in which the robot's location is represented as the firing of place cells. If a goal location is encountered, learning occurs in connections from the concurrently active place cells to a set of 'goal cells', which guide subsequent navigation, allowing the robot to return to an unmarked location. The system shows good agreement with actual place-cell firing, and makes predictions regarding the firing of cells in the subiculum, the effect of blocking long-term synaptic changes, and the locus of search of rats after deformation of their environment.

Full Text

The Full Text of this article is available as a PDF (217.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair H. T., Sharp P. E. Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat. Behav Neurosci. 1996 Aug;110(4):643–660. doi: 10.1037//0735-7044.110.4.643. [DOI] [PubMed] [Google Scholar]
  2. Brown M. A., Sharp P. E. Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampal formation and nucleus accumbens. Hippocampus. 1995;5(3):171–188. doi: 10.1002/hipo.450050304. [DOI] [PubMed] [Google Scholar]
  3. Burgess N., O'Keefe J. Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus. 1996;6(6):749–762. doi: 10.1002/(SICI)1098-1063(1996)6:6<749::AID-HIPO16>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  4. Collett T. S., Cartwright B. A., Smith B. A. Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A. 1986 Jun;158(6):835–851. doi: 10.1007/BF01324825. [DOI] [PubMed] [Google Scholar]
  5. Cressant A., Muller R. U., Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci. 1997 Apr 1;17(7):2531–2542. doi: 10.1523/JNEUROSCI.17-07-02531.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Etienne A. S., Maurer R., Séguinot V. Path integration in mammals and its interaction with visual landmarks. J Exp Biol. 1996 Jan;199(Pt 1):201–209. doi: 10.1242/jeb.199.1.201. [DOI] [PubMed] [Google Scholar]
  7. Georgopoulos A. P., Kettner R. E., Schwartz A. B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci. 1988 Aug;8(8):2928–2937. doi: 10.1523/JNEUROSCI.08-08-02928.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Habib M., Sirigu A. Pure topographical disorientation: a definition and anatomical basis. Cortex. 1987 Mar;23(1):73–85. doi: 10.1016/s0010-9452(87)80020-5. [DOI] [PubMed] [Google Scholar]
  9. Hughes A. A schematic eye for the rat. Vision Res. 1979;19(5):569–588. doi: 10.1016/0042-6989(79)90143-3. [DOI] [PubMed] [Google Scholar]
  10. Jarrard L. E. On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol. 1993 Jul;60(1):9–26. doi: 10.1016/0163-1047(93)90664-4. [DOI] [PubMed] [Google Scholar]
  11. Knierim J. J., Kudrimoti H. S., McNaughton B. L. Place cells, head direction cells, and the learning of landmark stability. J Neurosci. 1995 Mar;15(3 Pt 1):1648–1659. doi: 10.1523/JNEUROSCI.15-03-01648.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maguire E. A., Burke T., Phillips J., Staunton H. Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia. 1996 Oct;34(10):993–1001. doi: 10.1016/0028-3932(96)00022-x. [DOI] [PubMed] [Google Scholar]
  13. Maguire E. A., Frackowiak R. S., Frith C. D. Learning to find your way: a role for the human hippocampal formation. Proc Biol Sci. 1996 Dec 22;263(1377):1745–1750. doi: 10.1098/rspb.1996.0255. [DOI] [PubMed] [Google Scholar]
  14. Mizumori S. J., Williams J. D. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci. 1993 Sep;13(9):4015–4028. doi: 10.1523/JNEUROSCI.13-09-04015.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morris R. G., Garrud P., Rawlins J. N., O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982 Jun 24;297(5868):681–683. doi: 10.1038/297681a0. [DOI] [PubMed] [Google Scholar]
  16. Muller R. U., Kubie J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987 Jul;7(7):1951–1968. doi: 10.1523/JNEUROSCI.07-07-01951.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Keefe J., Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature. 1996 May 30;381(6581):425–428. doi: 10.1038/381425a0. [DOI] [PubMed] [Google Scholar]
  18. O'Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971 Nov;34(1):171–175. doi: 10.1016/0006-8993(71)90358-1. [DOI] [PubMed] [Google Scholar]
  19. O'Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976 Apr;51(1):78–109. doi: 10.1016/0014-4886(76)90055-8. [DOI] [PubMed] [Google Scholar]
  20. O'Keefe J., Recce M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993 Jul;3(3):317–330. doi: 10.1002/hipo.450030307. [DOI] [PubMed] [Google Scholar]
  21. O'Keefe J., Speakman A. Single unit activity in the rat hippocampus during a spatial memory task. Exp Brain Res. 1987;68(1):1–27. doi: 10.1007/BF00255230. [DOI] [PubMed] [Google Scholar]
  22. Pavlides C., Greenstein Y. J., Grudman M., Winson J. Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res. 1988 Jan 26;439(1-2):383–387. doi: 10.1016/0006-8993(88)91499-0. [DOI] [PubMed] [Google Scholar]
  23. Quirk G. J., Muller R. U., Kubie J. L., Ranck J. B., Jr The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci. 1992 May;12(5):1945–1963. doi: 10.1523/JNEUROSCI.12-05-01945.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quirk G. J., Muller R. U., Kubie J. L. The firing of hippocampal place cells in the dark depends on the rat's recent experience. J Neurosci. 1990 Jun;10(6):2008–2017. doi: 10.1523/JNEUROSCI.10-06-02008.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rotenberg A., Mayford M., Hawkins R. D., Kandel E. R., Muller R. U. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell. 1996 Dec 27;87(7):1351–1361. doi: 10.1016/s0092-8674(00)81829-2. [DOI] [PubMed] [Google Scholar]
  26. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharp P. E., Blair H. T., Etkin D., Tzanetos D. B. Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J Neurosci. 1995 Jan;15(1 Pt 1):173–189. doi: 10.1523/JNEUROSCI.15-01-00173.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taube J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995 Jan;15(1 Pt 1):70–86. doi: 10.1523/JNEUROSCI.15-01-00070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taube J. S., Muller R. U., Ranck J. B., Jr Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990 Feb;10(2):420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Touretzky D. S., Redish A. D. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996;6(3):247–270. doi: 10.1002/(SICI)1098-1063(1996)6:3<247::AID-HIPO4>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  31. Wilson M. A., McNaughton B. L. Dynamics of the hippocampal ensemble code for space. Science. 1993 Aug 20;261(5124):1055–1058. doi: 10.1126/science.8351520. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES