Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Jun 29;353(1370):915–923. doi: 10.1098/rstb.1998.0256

The intestinal epithelium and its neoplasms: genetic, cellular and tissue interactions.

W F Dove 1, R T Cormier 1, K A Gould 1, R B Halberg 1, A J Merritt 1, M A Newton 1, A R Shoemaker 1
PMCID: PMC1692285  PMID: 9684289

Abstract

The Min (multiple intestinal neoplasia) strain of the laboratory mouse and its derivatives permit the fundamental study of factors that regulate the transition between normal and neoplastic growth. A gene of central importance in mediating these alternative patterns of growth is Apc, the mouse homologue of the human adenomatous polyposis coli (APC) gene. When adenomas form in the Min mouse, both copies of the Apc gene must be inactivated. One copy is mutated by the nonsense Apc allele carried in heterozygous form in this strain. The other copy can be silenced by any of several mechanisms. These range from loss of the homologue bearing the wild-type Apc allele; to interstitial deletions surrounding the wild-type allele; to intragenic mutation, including nonsense alleles; and finally, to a reduction in expression of the locus, perhaps owing to mutation in a regulatory locus. Each of these proposed mechanisms may constitute a two-hit genetic process as initially posited by Knudson; however, apparently the two hits could involve either a single locus or two loci. The kinetic order for the transition to adenoma may be still higher than two, if polyclonal adenomas require stronger interactions than passive fusion. The severity of the intestinal neoplastic phenotype of the Min mouse is strongly dependent upon loci other than Apc. One of these, Mom1, has now been rigorously identified at the molecular level as encoding an active resistance conferred by a secretory phospholipase. Mom1 acts locally within a crypt lineage, not systemically. Within the crypt lineage, however, its action seems to be non-autonomous: when tumours arise in Mom1 heterozygotes, the active resistance allele is maintained in the tumour (MOH or maintenance of heterozygosity). Indeed, the secretory phospholipase is synthesized by post-mitotic Paneth cells, not by the proliferative cells that presumably generate the tumour. An analysis of autonomy of modifier gene action in chimeric mice deserves detailed attention both to the number of genetic factors for which an animal is chimeric and to the clonal structure of the tissue in question. Beyond Mom1, other loci can strongly modify the severity of the Min phenotype. An emergent challenge is to find ways to identify the full set of genes that interact with the intestinal cancer predisposition of the Min mouse strain. With such a set, one can then work, using contemporary mouse genetics, to identify the molecular, cellular and organismal strategies that integrate their functions. Finally, with appropriately phenotyped human families, one can investigate by a candidate approach which modifying factors influence the epidemiology of human colon cancer. Even if a candidate modifier does not explain any of the genetic epidemiology of colon cancer in human populations, modifier activities discovered by mouse genetics provide candidates for chemopreventive and/or therapeutic modalities in the human.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjerknes M., Cheng H., Kim H., Schnitzler M., Gallinger S. Clonality of dysplastic epithelium in colorectal adenomas from familial adenomatous polyposis patients. Cancer Res. 1997 Feb 1;57(3):355–361. [PubMed] [Google Scholar]
  2. Cahill D. P., Lengauer C., Yu J., Riggins G. J., Willson J. K., Markowitz S. D., Kinzler K. W., Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998 Mar 19;392(6673):300–303. doi: 10.1038/32688. [DOI] [PubMed] [Google Scholar]
  3. Cormier R. T., Hong K. H., Halberg R. B., Hawkins T. L., Richardson P., Mulherkar R., Dove W. F., Lander E. S. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet. 1997 Sep;17(1):88–91. doi: 10.1038/ng0997-88. [DOI] [PubMed] [Google Scholar]
  4. Cutler S. J., Scotto J., Devesa S. S., Connelly R. R. Third National Cancer Survey--an overview of available information. J Natl Cancer Inst. 1974 Dec;53(6):1565–1575. [PubMed] [Google Scholar]
  5. Dexter M., Allen T. Haematopoiesis. Multi-talented stem cells? Nature. 1992 Dec 24;360(6406):709–710. doi: 10.1038/360709a0. [DOI] [PubMed] [Google Scholar]
  6. Dexter M. Growth factors. From the laboratory to the clinic. Nature. 1986 May 15;321(6067):198–198. doi: 10.1038/321198a0. [DOI] [PubMed] [Google Scholar]
  7. Dietrich W. F., Lander E. S., Smith J. S., Moser A. R., Gould K. A., Luongo C., Borenstein N., Dove W. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell. 1993 Nov 19;75(4):631–639. doi: 10.1016/0092-8674(93)90484-8. [DOI] [PubMed] [Google Scholar]
  8. Dove W. F., Gould K. A., Luongo C., Moser A. R., Shoemaker A. R. Emergent issues in the genetics of intestinal neoplasia. Cancer Surv. 1995;25:335–355. [PubMed] [Google Scholar]
  9. Dove W. F., Luongo C., Connelly C. S., Gould K. A., Shoemaker A. R., Moser A. R., Gardner R. L. The adenomatous polyposis coli gene of the mouse in development and neoplasia. Cold Spring Harb Symp Quant Biol. 1994;59:501–508. doi: 10.1101/sqb.1994.059.01.055. [DOI] [PubMed] [Google Scholar]
  10. Dove W. F. Molecular genetics of Mus musculus: point mutagenesis and millimorgans. Genetics. 1987 May;116(1):5–8. doi: 10.1093/genetics/116.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardner R. L. Extrinsic factors in cellular differentiation. Int J Dev Biol. 1993 Mar;37(1):47–50. [PubMed] [Google Scholar]
  12. Gehring W. Clonal analysis of determination dynamics in cultures of imaginal disks in Drosophila melanogaster. Dev Biol. 1967 Nov;16(5):438–456. doi: 10.1016/0012-1606(67)90058-9. [DOI] [PubMed] [Google Scholar]
  13. Gould K. A., Dove W. F. Action of Min and Mom1 on neoplasia in ectopic intestinal grafts. Cell Growth Differ. 1996 Oct;7(10):1361–1368. [PubMed] [Google Scholar]
  14. Gould K. A., Dove W. F. Localized gene action controlling intestinal neoplasia in mice. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5848–5853. doi: 10.1073/pnas.94.11.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gould K. A., Luongo C., Moser A. R., McNeley M. K., Borenstein N., Shedlovsky A., Dove W. F., Hong K., Dietrich W. F., Lander E. S. Genetic evaluation of candidate genes for the Mom1 modifier of intestinal neoplasia in mice. Genetics. 1996 Dec;144(4):1777–1785. doi: 10.1093/genetics/144.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Griffiths D. F., Sacco P., Williams D., Williams G. T., Williams E. D. The clonal origin of experimental large bowel tumours. Br J Cancer. 1989 Mar;59(3):385–387. doi: 10.1038/bjc.1989.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gurdon J. B., Lemaire P., Kato K. Community effects and related phenomena in development. Cell. 1993 Dec 3;75(5):831–834. doi: 10.1016/0092-8674(93)90526-v. [DOI] [PubMed] [Google Scholar]
  18. Haber D. A., Buckler A. J., Glaser T., Call K. M., Pelletier J., Sohn R. L., Douglass E. C., Housman D. E. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell. 1990 Jun 29;61(7):1257–1269. doi: 10.1016/0092-8674(90)90690-g. [DOI] [PubMed] [Google Scholar]
  19. Hiltunen M. O., Alhonen L., Koistinaho J., Myöhänen S., Päkkönen M., Marin S., Kosma V. M., Jänne J. Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int J Cancer. 1997 Mar 17;70(6):644–648. doi: 10.1002/(sici)1097-0215(19970317)70:6<644::aid-ijc3>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  20. Jacks T. Tumor suppressor gene mutations in mice. Annu Rev Genet. 1996;30:603–636. doi: 10.1146/annurev.genet.30.1.603. [DOI] [PubMed] [Google Scholar]
  21. Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 Oct 18;87(2):159–170. doi: 10.1016/s0092-8674(00)81333-1. [DOI] [PubMed] [Google Scholar]
  22. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lengauer C., Kinzler K. W., Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997 Apr 10;386(6625):623–627. doi: 10.1038/386623a0. [DOI] [PubMed] [Google Scholar]
  24. Luongo C., Dove W. F. Somatic genetic events linked to the Apc locus in intestinal adenomas of the Min mouse. Genes Chromosomes Cancer. 1996 Nov;17(3):194–198. doi: 10.1002/1098-2264(199611)17:3<194::aid-gcc2870170302>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  25. Luongo C., Moser A. R., Gledhill S., Dove W. F. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994 Nov 15;54(22):5947–5952. [PubMed] [Google Scholar]
  26. MacPhee M., Chepenik K. P., Liddell R. A., Nelson K. K., Siracusa L. D., Buchberg A. M. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell. 1995 Jun 16;81(6):957–966. doi: 10.1016/0092-8674(95)90015-2. [DOI] [PubMed] [Google Scholar]
  27. Midgley C. A., White S., Howitt R., Save V., Dunlop M. G., Hall P. A., Lane D. P., Wyllie A. H., Bubb V. J. APC expression in normal human tissues. J Pathol. 1997 Apr;181(4):426–433. doi: 10.1002/(SICI)1096-9896(199704)181:4<426::AID-PATH768>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  28. Moser A. R., Dove W. F., Roth K. A., Gordon J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol. 1992 Mar;116(6):1517–1526. doi: 10.1083/jcb.116.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moser A. R., Pitot H. C., Dove W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990 Jan 19;247(4940):322–324. doi: 10.1126/science.2296722. [DOI] [PubMed] [Google Scholar]
  30. Moser A. R., Shoemaker A. R., Connelly C. S., Clipson L., Gould K. A., Luongo C., Dove W. F., Siggers P. H., Gardner R. L. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev Dyn. 1995 Aug;203(4):422–433. doi: 10.1002/aja.1002030405. [DOI] [PubMed] [Google Scholar]
  31. Novelli M. R., Williamson J. A., Tomlinson I. P., Elia G., Hodgson S. V., Talbot I. C., Bodmer W. F., Wright N. A. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science. 1996 May 24;272(5265):1187–1190. doi: 10.1126/science.272.5265.1187. [DOI] [PubMed] [Google Scholar]
  32. Oshima M., Dinchuk J. E., Kargman S. L., Oshima H., Hancock B., Kwong E., Trzaskos J. M., Evans J. F., Taketo M. M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996 Nov 29;87(5):803–809. doi: 10.1016/s0092-8674(00)81988-1. [DOI] [PubMed] [Google Scholar]
  33. Peto R., Roe F. J., Lee P. N., Levy L., Clack J. Cancer and ageing in mice and men. Br J Cancer. 1975 Oct;32(4):411–426. doi: 10.1038/bjc.1975.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Polakis P. Mutations in the APC gene and their implications for protein structure and function. Curr Opin Genet Dev. 1995 Feb;5(1):66–71. doi: 10.1016/s0959-437x(95)90055-1. [DOI] [PubMed] [Google Scholar]
  35. Ponder B. A., Wilkinson M. M. Direct examination of the clonality of carcinogen-induced colonic epithelial dysplasia in chimeric mice. J Natl Cancer Inst. 1986 Oct;77(4):967–976. [PubMed] [Google Scholar]
  36. Riggins G. J., Markowitz S., Wilson J. K., Vogelstein B., Kinzler K. W. Absence of secretory phospholipase A2 gene alterations in human colorectal cancer. Cancer Res. 1995 Nov 15;55(22):5184–5186. [PubMed] [Google Scholar]
  37. Schmidt G. H., Winton D. J., Ponder B. A. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development. 1988 Aug;103(4):785–790. doi: 10.1242/dev.103.4.785. [DOI] [PubMed] [Google Scholar]
  38. Shoemaker A. R., Gould K. A., Luongo C., Moser A. R., Dove W. F. Studies of neoplasia in the Min mouse. Biochim Biophys Acta. 1997 Apr 18;1332(2):F25–F48. doi: 10.1016/s0304-419x(96)00041-8. [DOI] [PubMed] [Google Scholar]
  39. Shoemaker A. R., Luongo C., Moser A. R., Marton L. J., Dove W. F. Somatic mutational mechanisms involved in intestinal tumor formation in Min mice. Cancer Res. 1997 May 15;57(10):1999–2006. [PubMed] [Google Scholar]
  40. Shoemaker A. R., Moser A. R., Dove W. F. N-ethyl-N-nitrosourea treatment of multiple intestinal neoplasia (Min) mice: age-related effects on the formation of intestinal adenomas, cystic crypts, and epidermoid cysts. Cancer Res. 1995 Oct 1;55(19):4479–4485. [PubMed] [Google Scholar]
  41. Solomon E., Voss R., Hall V., Bodmer W. F., Jass J. R., Jeffreys A. J., Lucibello F. C., Patel I., Rider S. H. Chromosome 5 allele loss in human colorectal carcinomas. Nature. 1987 Aug 13;328(6131):616–619. doi: 10.1038/328616a0. [DOI] [PubMed] [Google Scholar]
  42. Spirio L. N., Kutchera W., Winstead M. V., Pearson B., Kaplan C., Robertson M., Lawrence E., Burt R. W., Tischfield J. A., Leppert M. F. Three secretory phospholipase A(2) genes that map to human chromosome 1P35-36 are not mutated in individuals with attenuated adenomatous polyposis coli. Cancer Res. 1996 Mar 1;56(5):955–958. [PubMed] [Google Scholar]
  43. Su L. K., Kinzler K. W., Vogelstein B., Preisinger A. C., Moser A. R., Luongo C., Gould K. A., Dove W. F. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science. 1992 May 1;256(5057):668–670. doi: 10.1126/science.1350108. [DOI] [PubMed] [Google Scholar]
  44. Tomlinson I. P., Beck N. E., Neale K., Bodmer W. F. Variants at the secretory phospholipase A2 (PLA2G2A) locus: analysis of associations with familial adenomatous polyposis and sporadic colorectal tumours. Ann Hum Genet. 1996 Sep;60(Pt 5):369–376. doi: 10.1111/j.1469-1809.1996.tb00434.x. [DOI] [PubMed] [Google Scholar]
  45. Tomlinson I. P., Neale K., Talbot I. C., Spigelman A. D., Williams C. B., Phillips R. K., Bodmer W. F. A modifying locus for familial adenomatous polyposis may be present on chromosome 1p35-p36. J Med Genet. 1996 Apr;33(4):268–273. doi: 10.1136/jmg.33.4.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wong M. H., Hermiston M. L., Syder A. J., Gordon J. I. Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9588–9593. doi: 10.1073/pnas.93.18.9588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zambrowicz B. P., Imamoto A., Fiering S., Herzenberg L. A., Kerr W. G., Soriano P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3789–3794. doi: 10.1073/pnas.94.8.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES