Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Sep 29;353(1374):1495–1510. doi: 10.1098/rstb.1998.0305

Signal transduction in the wound response of tomato plants.

D Bowles 1
PMCID: PMC1692347  PMID: 9800210

Abstract

The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory.

Full Text

The Full Text of this article is available as a PDF (312.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn N. G. The MAP kinase cascade. Discovery of a new signal transduction pathway. Mol Cell Biochem. 1993 Nov;127-128:201–209. doi: 10.1007/BF01076771. [DOI] [PubMed] [Google Scholar]
  2. Allan A. C., Fluhr R. Two Distinct Sources of Elicited Reactive Oxygen Species in Tobacco Epidermal Cells. Plant Cell. 1997 Sep;9(9):1559–1572. doi: 10.1105/tpc.9.9.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Assmann S. M., Haubrick L. L. Transport proteins of the plant plasma membrane. Curr Opin Cell Biol. 1996 Aug;8(4):458–467. doi: 10.1016/s0955-0674(96)80021-4. [DOI] [PubMed] [Google Scholar]
  4. Bell E., Creelman R. A., Mullet J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675–8679. doi: 10.1073/pnas.92.19.8675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop P. D., Makus D. J., Pearce G., Ryan C. A. Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3536–3540. doi: 10.1073/pnas.78.6.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bishop P. D., Pearce G., Bryant J. E., Ryan C. A. Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem. 1984 Nov 10;259(21):13172–13177. [PubMed] [Google Scholar]
  7. Blechert S., Brodschelm W., Hölder S., Kammerer L., Kutchan T. M., Mueller M. J., Xia Z. Q., Zenk M. H. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4099–4105. doi: 10.1073/pnas.92.10.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blee E., Joyard J. Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides. Plant Physiol. 1996 Feb;110(2):445–454. doi: 10.1104/pp.110.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bogre L., Ligterink W., Meskiene I., Barker P. J., Heberle-Bors E., Huskisson N. S., Hirt H. Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway. Plant Cell. 1997 Jan;9(1):75–83. doi: 10.1105/tpc.9.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  11. Bowles D. J. Local and systemic signals in the wound response. Semin Cell Biol. 1993 Apr;4(2):103–111. doi: 10.1006/scel.1993.1013. [DOI] [PubMed] [Google Scholar]
  12. Chandra S., Heinstein P. F., Low P. S. Activation of Phospholipase A by Plant Defense Elicitors. Plant Physiol. 1996 Mar;110(3):979–986. doi: 10.1104/pp.110.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  14. Conconi A., Miquel M., Browse J. A., Ryan C. A. Intracellular Levels of Free Linolenic and Linoleic Acids Increase in Tomato Leaves in Response to Wounding. Plant Physiol. 1996 Jul;111(3):797–803. doi: 10.1104/pp.111.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Conrath U., Jeblick W., Kauss H. The protein kinase inhibitor, K-252a, decreases elicitor-induced Ca2+ uptake and K+ release, and increases coumarin synthesis in parsley cells. FEBS Lett. 1991 Feb 11;279(1):141–144. doi: 10.1016/0014-5793(91)80269-9. [DOI] [PubMed] [Google Scholar]
  16. Creelman R. A., Mullet J. E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4114–4119. doi: 10.1073/pnas.92.10.4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dammann C., Rojo E., Sánchez-Serrano J. J. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 1997 Apr;11(4):773–782. doi: 10.1046/j.1365-313x.1997.11040773.x. [DOI] [PubMed] [Google Scholar]
  18. Darvill A., Augur C., Bergmann C., Carlson R. W., Cheong J. J., Eberhard S., Hahn M. G., Ló V. M., Marfà V., Meyer B. Oligosaccharins--oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology. 1992 Jun;2(3):181–198. doi: 10.1093/glycob/2.3.181. [DOI] [PubMed] [Google Scholar]
  19. Doares S. H., Narvaez-Vasquez J., Conconi A., Ryan C. A. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol. 1995 Aug;108(4):1741–1746. doi: 10.1104/pp.108.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Doares S. H., Syrovets T., Weiler E. W., Ryan C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4095–4098. doi: 10.1073/pnas.92.10.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Farmer E. E. Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol. 1994 Dec;26(5):1423–1437. doi: 10.1007/BF00016483. [DOI] [PubMed] [Google Scholar]
  22. Farmer E. E., Johnson R. R., Ryan C. A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol. 1992 Mar;98(3):995–1002. doi: 10.1104/pp.98.3.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Farmer E. E., Moloshok T. D., Saxton M. J., Ryan C. A. Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem. 1991 Feb 15;266(5):3140–3145. [PubMed] [Google Scholar]
  24. Farmer E. E., Pearce G., Ryan C. A. In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1539–1542. doi: 10.1073/pnas.86.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gotoh Y., Nishida E., Yamashita T., Hoshi M., Kawakami M., Sakai H. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem. 1990 Nov 13;193(3):661–669. doi: 10.1111/j.1432-1033.1990.tb19384.x. [DOI] [PubMed] [Google Scholar]
  28. Green T. R., Ryan C. A. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science. 1972 Feb 18;175(4023):776–777. doi: 10.1126/science.175.4023.776. [DOI] [PubMed] [Google Scholar]
  29. Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gu Y. Q., Pautot V., Holzer F. M., Walling L. L. A Complex Array of Proteins Related to the Multimeric Leucine Aminopeptidase of Tomato. Plant Physiol. 1996 Apr;110(4):1257–1266. doi: 10.1104/pp.110.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hahn M. G., Darvill A. G., Albersheim P. Host-Pathogen Interactions : XIX. THE ENDOGENOUS ELICITOR, A FRAGMENT OF A PLANT CELL WALL POLYSACCHARIDE THAT ELICITS PHYTOALEXIN ACCUMULATION IN SOYBEANS. Plant Physiol. 1981 Nov;68(5):1161–1169. doi: 10.1104/pp.68.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Harms K., Atzorn R., Brash A., Kuhn H., Wasternack C., Willmitzer L., Pena-Cortes H. Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes. Plant Cell. 1995 Oct;7(10):1645–1654. doi: 10.1105/tpc.7.10.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Heitz T., Bergey D. R., Ryan C. A. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 1997 Jul;114(3):1085–1093. doi: 10.1104/pp.114.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Herde O., Atzorn R., Fisahn J., Wasternack C., Willmitzer L., Pena-Cortes H. Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis. Plant Physiol. 1996 Oct;112(2):853–860. doi: 10.1104/pp.112.2.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hopke J., Donath J., Blechert S., Boland W. Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett. 1994 Sep 26;352(2):146–150. doi: 10.1016/0014-5793(94)00948-1. [DOI] [PubMed] [Google Scholar]
  38. Howe G. A., Lightner J., Browse J., Ryan C. A. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell. 1996 Nov;8(11):2067–2077. doi: 10.1105/tpc.8.11.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hunter T., Karin M. The regulation of transcription by phosphorylation. Cell. 1992 Aug 7;70(3):375–387. doi: 10.1016/0092-8674(92)90162-6. [DOI] [PubMed] [Google Scholar]
  40. Jin D. F., West C. A. Characteristics of galacturonic Acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol. 1984 Apr;74(4):989–992. doi: 10.1104/pp.74.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Jonak C., Heberle-Bors E., Hirt H. MAP kinases: universal multi-purpose signaling tools. Plant Mol Biol. 1994 Feb;24(3):407–416. doi: 10.1007/BF00024109. [DOI] [PubMed] [Google Scholar]
  42. Jonak C., Kiegerl S., Ligterink W., Barker P. J., Huskisson N. S., Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11274–11279. doi: 10.1073/pnas.93.20.11274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kernan A., Thornburg R. W. Auxin Levels Regulate the Expression of a Wound-Inducible Proteinase Inhibitor II-Chloramphenicol Acetyl Transferase Gene Fusion in Vitro and in Vivo. Plant Physiol. 1989 Sep;91(1):73–78. doi: 10.1104/pp.91.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  45. Knetsch MLW., Wang M., Snaar-Jagalska B. E., Heimovaara-Dijkstra S. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts. Plant Cell. 1996 Jun;8(6):1061–1067. doi: 10.1105/tpc.8.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Korth K. L., Dixon R. A. Evidence for Chewing Insect-Specific Molecular Events Distinct from a General Wound Response in Leaves. Plant Physiol. 1997 Dec;115(4):1299–1305. doi: 10.1104/pp.115.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Korthout H. A., de Boer A. H. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. Plant Cell. 1994 Nov;6(11):1681–1692. doi: 10.1105/tpc.6.11.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Krumm T., Bandemer K., Boland W. Induction of volatile biosynthesis in the lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway. FEBS Lett. 1995 Dec 27;377(3):523–529. doi: 10.1016/0014-5793(95)01398-9. [DOI] [PubMed] [Google Scholar]
  49. Laudert D., Pfannschmidt U., Lottspeich F., Holländer-Czytko H., Weiler E. W. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol. 1996 May;31(2):323–335. doi: 10.1007/BF00021793. [DOI] [PubMed] [Google Scholar]
  50. Lightner J., Pearce G., Ryan C. A., Browse J. Isolation of signaling mutants of tomato (Lycopersicon esculentum). Mol Gen Genet. 1993 Dec;241(5-6):595–601. doi: 10.1007/BF00279902. [DOI] [PubMed] [Google Scholar]
  51. Marra M., Fullone M. R., Fogliano V., Pen J., Mattei M., Masi S., Aducci P. The 30-kilodalton protein present in purified fusicoccin receptor preparations is a 14-3-3-like protein. Plant Physiol. 1994 Dec;106(4):1497–1501. doi: 10.1104/pp.106.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. McConn M., Creelman R. A., Bell E., Mullet J. E., Browse J. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5473–5477. doi: 10.1073/pnas.94.10.5473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. McGurl B., Orozco-Cardenas M., Pearce G., Ryan C. A. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9799–9802. doi: 10.1073/pnas.91.21.9799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. McGurl B., Pearce G., Orozco-Cardenas M., Ryan C. A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science. 1992 Mar 20;255(5051):1570–1573. doi: 10.1126/science.1549783. [DOI] [PubMed] [Google Scholar]
  55. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):765–769. doi: 10.1073/pnas.93.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Narvaez-Vasquez J., Orozco-Cardenas M. L., Ryan C. A. A Sulfhydryl Reagent Modulates Systemic Signaling for Wound-Induced and Systemin-Induced Proteinase Inhibitor Synthesis. Plant Physiol. 1994 Jun;105(2):725–730. doi: 10.1104/pp.105.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science. 1996 Dec 13;274(5294):1914–1917. doi: 10.1126/science.274.5294.1914. [DOI] [PubMed] [Google Scholar]
  59. Oecking C., Eckerskorn C., Weiler E. W. The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett. 1994 Sep 26;352(2):163–166. doi: 10.1016/0014-5793(94)00949-x. [DOI] [PubMed] [Google Scholar]
  60. Pautot V., Holzer F. M., Walling L. L. Differential expression of tomato proteinase inhibitor I and II genes during bacterial pathogen invasion and wounding. Mol Plant Microbe Interact. 1991 May-Jun;4(3):284–292. doi: 10.1094/mpmi-4-284. [DOI] [PubMed] [Google Scholar]
  61. Pearce G., Johnson S., Ryan C. A. Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem. 1993 Jan 5;268(1):212–216. [PubMed] [Google Scholar]
  62. Pearce G., Strydom D., Johnson S., Ryan C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991 Aug 23;253(5022):895–897. doi: 10.1126/science.253.5022.895. [DOI] [PubMed] [Google Scholar]
  63. Pena-Cortes H., Willmitzer L., Sanchez-Serrano J. J. Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family. Plant Cell. 1991 Sep;3(9):963–972. doi: 10.1105/tpc.3.9.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Peña-Cortés H., Fisahn J., Willmitzer L. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4106–4113. doi: 10.1073/pnas.92.10.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Piel J., Atzorn R., Gäbler R., Kühnemann F., Boland W. Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. FEBS Lett. 1997 Oct 20;416(2):143–148. doi: 10.1016/s0014-5793(97)01169-1. [DOI] [PubMed] [Google Scholar]
  66. Pēna-Cortés H., Sánchez-Serrano J. J., Mertens R., Willmitzer L., Prat S. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9851–9855. doi: 10.1073/pnas.86.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Rasi-Caldognov F., Pugliarello M. C., Olivari C., De Michelis M. I. Controlled Proteolysis Mimics the Effect of Fusicoccin on the Plasma Membrane H+-ATPase. Plant Physiol. 1993 Oct;103(2):391–398. doi: 10.1104/pp.103.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ravid U., Ikan R., Sachs R. M. Structures related to jasmonic acid and their effect on lettuce seedling growth. J Agric Food Chem. 1975 Sep-Oct;23(5):835–838. doi: 10.1021/jf60201a053. [DOI] [PubMed] [Google Scholar]
  69. Ray L. B., Sturgill T. W. Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells. J Biol Chem. 1988 Sep 5;263(25):12721–12727. [PubMed] [Google Scholar]
  70. Reymond P., Grünberger S., Paul K., Müller M., Farmer E. E. Oligogalacturonide defense signals in plants: large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4145–4149. doi: 10.1073/pnas.92.10.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Reymond P., Kunz B., Paul-Pletzer K., Grimm R., Eckerskorn C., Farmer E. E. Cloning of a cDNA encoding a plasma membrane-associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins. Plant Cell. 1996 Dec;8(12):2265–2276. doi: 10.1105/tpc.8.12.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Russell D. J., Pearce G., Ryan C. A., Satterlee J. D. Proton NMR assignments of systemin. J Protein Chem. 1992 Jun;11(3):265–274. doi: 10.1007/BF01024865. [DOI] [PubMed] [Google Scholar]
  73. Schaller A., Bergey D. R., Ryan C. A. Induction of wound response genes in tomato leaves by bestatin, an inhibitor of aminopeptidases. Plant Cell. 1995 Nov;7(11):1893–1898. doi: 10.1105/tpc.7.11.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Schaller A., Ryan C. A. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p-like properties. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11802–11806. doi: 10.1073/pnas.91.25.11802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Schaller F., Weiler E. W. Enzymes of octadecanoid biosynthesis in plants--12-oxo-phytodienoate 10,11-reductase. Eur J Biochem. 1997 Apr 15;245(2):294–299. doi: 10.1111/j.1432-1033.1997.t01-1-00294.x. [DOI] [PubMed] [Google Scholar]
  76. Schmidt C., Schelle I., Liao Y. J., Schroeder J. I. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9535–9539. doi: 10.1073/pnas.92.21.9535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995 Dec 22;270(5244):1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
  78. Simpson S. D., Ashford D. A., Harvey D. J., Bowles D. J. Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology. 1998 Jun;8(6):579–583. doi: 10.1093/glycob/8.6.579. [DOI] [PubMed] [Google Scholar]
  79. Song W. C., Brash A. R. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science. 1991 Aug 16;253(5021):781–784. doi: 10.1126/science.1876834. [DOI] [PubMed] [Google Scholar]
  80. Song W. C., Funk C. D., Brash A. R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8519–8523. doi: 10.1073/pnas.90.18.8519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Spanu P., Grosskopf D. G., Felix G., Boller T. The Apparent Turnover of 1-Aminocyclopropane-1-Carboxylate Synthase in Tomato Cells Is Regulated by Protein Phosphorylation and Dephosphorylation. Plant Physiol. 1994 Oct;106(2):529–535. doi: 10.1104/pp.106.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Stratmann J. W., Ryan C. A. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11085–11089. doi: 10.1073/pnas.94.20.11085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Suzuki K., Shinshi H. Transient Activation and Tyrosine Phosphorylation of a Protein Kinase in Tobacco Cells Treated with a Fungal Elicitor. Plant Cell. 1995 May;7(5):639–647. doi: 10.1105/tpc.7.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Thornburg R. W., Li X. Wounding Nicotiana tabacum Leaves Causes a Decline in Endogenous Indole-3-Acetic Acid. Plant Physiol. 1991 Jul;96(3):802–805. doi: 10.1104/pp.96.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Usami S., Banno H., Ito Y., Nishihama R., Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8660–8664. doi: 10.1073/pnas.92.19.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Vick B. A., Zimmerman D. C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. doi: 10.1104/pp.75.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Walker-Simmons M., Jin D., West C. A., Hadwiger L., Ryan C. A. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol. 1984 Nov;76(3):833–836. doi: 10.1104/pp.76.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Walker-Simmons M., Ryan C. A. Proteinase inhibitor synthesis in tomato leaves : induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiol. 1984 Nov;76(3):787–790. doi: 10.1104/pp.76.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Xing T., Higgins V. J., Blumwald E. Regulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase. Plant Cell. 1996 Mar;8(3):555–564. doi: 10.1105/tpc.8.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Ziegler J., Hamberg M., Miersch O., Parthier B. Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds. Plant Physiol. 1997 Jun;114(2):565–573. doi: 10.1104/pp.114.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES