Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Mar 29;354(1383):645–651. doi: 10.1098/rstb.1999.0416

Tobacco mosaic virus virulence and avirulence.

W O Dawson 1
PMCID: PMC1692533  PMID: 10212944

Abstract

In celebration of a century of research on tobacco mosaic virus that initiated the science of virology, I review recent progress relative to earlier contributions concerning how viruses cause diseases of plants and how plants defend themselves from viruses.

Full Text

The Full Text of this article is available as a PDF (143.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almon E., Horowitz M., Wang H. L., Lucas W. J., Zamski E., Wolf S. Phloem-Specific Expression of the Tobacco Mosaic Virus Movement Protein Alters Carbon Metabolism and Partitioning in Transgenic Potato Plants. Plant Physiol. 1997 Dec;115(4):1599–1607. doi: 10.1104/pp.115.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aranda M. A., Escaler M., Wang D., Maule A. J. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15289–15293. doi: 10.1073/pnas.93.26.15289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee N., Wang J. Y., Zaitlin M. A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis. Virology. 1995 Feb 20;207(1):234–239. doi: 10.1006/viro.1995.1070. [DOI] [PubMed] [Google Scholar]
  4. Berzal-Herranz A., de la Cruz A., Tenllado F., Díaz-Ruíz J. R., López L., Sanz A. I., Vaquero C., Serra M. T., García-Luque I. The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein. Virology. 1995 Jun 1;209(2):498–505. doi: 10.1006/viro.1995.1282. [DOI] [PubMed] [Google Scholar]
  5. Calder V. L., Palukaitis P. Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. J Gen Virol. 1992 Jan;73(Pt 1):165–168. doi: 10.1099/0022-1317-73-1-165. [DOI] [PubMed] [Google Scholar]
  6. Culver J. N., Dawson W. O. Tobacco mosaic virus coat protein: an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology. 1989 Dec;173(2):755–758. doi: 10.1016/0042-6822(89)90592-8. [DOI] [PubMed] [Google Scholar]
  7. Culver J. N., Stubbs G., Dawson W. O. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J Mol Biol. 1994 Sep 16;242(2):130–138. doi: 10.1006/jmbi.1994.1564. [DOI] [PubMed] [Google Scholar]
  8. Dawson W. O., Schlegel D. E. Differential temperature treatment of plants greatly enhances multiplication rates. Virology. 1973 Jun;53(2):476–478. doi: 10.1016/0042-6822(73)90229-8. [DOI] [PubMed] [Google Scholar]
  9. Dawson W. O., Schlegel D. E., Lung M. C. Synthesis of tobacco mosaic virus in intact tobacco leaves systemically inoculated by differential temperature treatment. Virology. 1975 Jun;65(2):565–573. doi: 10.1016/0042-6822(75)90061-6. [DOI] [PubMed] [Google Scholar]
  10. Dawson W. O. Synthesis of TMV RNA at restrictive high temperatures. Virology. 1976 Sep;73(2):319–326. doi: 10.1016/0042-6822(76)90393-7. [DOI] [PubMed] [Google Scholar]
  11. Dawson W. O. Tobamovirus-plant interactions. Virology. 1992 Feb;186(2):359–367. doi: 10.1016/0042-6822(92)90001-6. [DOI] [PubMed] [Google Scholar]
  12. FRANKLIN R. E. Structure of tobacco mosaic virus. Nature. 1955 Feb 26;175(4452):379–381. doi: 10.1038/175379a0. [DOI] [PubMed] [Google Scholar]
  13. FUNATSU G., FRAENKEL-CONRAT H. LOCATION OF AMINO ACID EXCHANGES IN CHEMICALLY EVOKED MUTANTS OF TOBACCO MOSAIC VIRUS. Biochemistry. 1964 Sep;3:1356–1362. doi: 10.1021/bi00897a028. [DOI] [PubMed] [Google Scholar]
  14. Holt C. A., Hodgson R. A., Coker F. A., Beachy R. N., Nelson R. S. Characterization of the masked strain of tobacco mosaic virus: identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone. Mol Plant Microbe Interact. 1990 Nov-Dec;3(6):417–423. doi: 10.1094/mpmi-3-417. [DOI] [PubMed] [Google Scholar]
  15. Knorr D. A., Dawson W. O. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci U S A. 1988 Jan;85(1):170–174. doi: 10.1073/pnas.85.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindbo J. A., Silva-Rosales L., Proebsting W. M., Dougherty W. G. Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell. 1993 Dec;5(12):1749–1759. doi: 10.1105/tpc.5.12.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MUNDRY K. W., GIERER A. Die Erzeugung von Mutationen des Tabakmosaikvirus durch chemische Behandlung seiner Nucleinsäure in vitro. Z Vererbungsl. 1958;89(4):614–630. [PubMed] [Google Scholar]
  18. Meshi T., Motoyoshi F., Maeda T., Yoshiwoka S., Watanabe H., Okada Y. Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell. 1989 May;1(5):515–522. doi: 10.1105/tpc.1.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Namba K., Pattanayek R., Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol. 1989 Jul 20;208(2):307–325. doi: 10.1016/0022-2836(89)90391-4. [DOI] [PubMed] [Google Scholar]
  20. Nilsson-Tillgren T., Kolehmainen-Sevéus L., von Wettstein D. Studies on the biosynthesis of TMV. I. A system approaching a synchronized virus synthesis in a tobacco leaf. Mol Gen Genet. 1969;104(2):124–141. doi: 10.1007/BF00272793. [DOI] [PubMed] [Google Scholar]
  21. Nishiguchi M., Kikuchi S., Kiho Y., Ohno T., Meshi T., Okada Y. Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Res. 1985 Aug 12;13(15):5585–5590. doi: 10.1093/nar/13.15.5585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Padgett H. S., Beachy R. N. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell. 1993 May;5(5):577–586. doi: 10.1105/tpc.5.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saito T., Meshi T., Takamatsu N., Okada Y. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6074–6077. doi: 10.1073/pnas.84.17.6074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saito T., Yamanaka K., Watanabe Y., Takamatsu N., Meshi T., Okada Y. Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N' gene. Virology. 1989 Nov;173(1):11–20. doi: 10.1016/0042-6822(89)90217-1. [DOI] [PubMed] [Google Scholar]
  25. Shintaku M. H., Carter S. A., Bao Y., Nelson R. S. Mapping nucleotides in the 126-kDa protein gene that control the differential symptoms induced by two strains of tobacco mosaic virus. Virology. 1996 Jul 1;221(1):218–225. doi: 10.1006/viro.1996.0368. [DOI] [PubMed] [Google Scholar]
  26. Stubbs G., Warren S., Holmes K. Structure of RNA and RNA binding site in tobacco mosaic virus from 4-A map calculated from X-ray fibre diagrams. Nature. 1977 May 19;267(5608):216–221. doi: 10.1038/267216a0. [DOI] [PubMed] [Google Scholar]
  27. Tecsi L. I., Smith A. M., Maule A. J., Leegood R. C. A Spatial Analysis of Physiological Changes Associated with Infection of Cotyledons of Marrow Plants with Cucumber Mosaic Virus. Plant Physiol. 1996 Aug;111(4):975–985. doi: 10.1104/pp.111.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsuda S., Kirita M., Watanabe Y. Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol Plant Microbe Interact. 1998 Apr;11(4):327–331. doi: 10.1094/MPMI.1998.11.4.327. [DOI] [PubMed] [Google Scholar]
  29. Turpen T. H., Reinl S. J., Charoenvit Y., Hoffman S. L., Fallarme V., Grill L. K. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (N Y) 1995 Jan;13(1):53–57. doi: 10.1038/nbt0195-53. [DOI] [PubMed] [Google Scholar]
  30. WATSON J. D. The structure of tobacco mosaic virus. I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim Biophys Acta. 1954 Jan;13(1):10–19. doi: 10.1016/0006-3002(54)90265-6. [DOI] [PubMed] [Google Scholar]
  31. Weber H., Schultze S., Pfitzner A. J. Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2(2) resistance gene in the tomato. J Virol. 1993 Nov;67(11):6432–6438. doi: 10.1128/jvi.67.11.6432-6438.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]
  33. de la Cruz A., López L., Tenllado F., Díaz-Ruíz J. R., Sanz A. I., Vaquero C., Serra M. T., García-Luque I. The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. Mol Plant Microbe Interact. 1997 Jan;10(1):107–113. doi: 10.1094/MPMI.1997.10.1.107. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES