Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Mar 29;354(1383):613–627. doi: 10.1098/rstb.1999.0413

Replication of tobacco mosaic virus RNA.

K W Buck 1
PMCID: PMC1692535  PMID: 10212941

Abstract

The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.

Full Text

The Full Text of this article is available as a PDF (302.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins S., Stawicki S. S., Faurote G., Siegel R. W., Kao C. C. Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase. RNA. 1998 Apr;4(4):455–470. [PMC free article] [PubMed] [Google Scholar]
  2. Ahola T., Laakkonen P., Vihinen H., Käriäinen L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol. 1997 Jan;71(1):392–397. doi: 10.1128/jvi.71.1.392-397.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aoki S., Takebe I. Replication of tobacco mosaic virus RNA in tobacco mesophyll protoplasts inoculated in vitro. Virology. 1975 Jun;65(2):343–354. doi: 10.1016/0042-6822(75)90040-9. [DOI] [PubMed] [Google Scholar]
  4. Asano K., Kinzy T. G., Merrick W. C., Hershey J. W. Conservation and diversity of eukaryotic translation initiation factor eIF3. J Biol Chem. 1997 Jan 10;272(2):1101–1109. doi: 10.1074/jbc.272.2.1101. [DOI] [PubMed] [Google Scholar]
  5. Bastin M., Hall T. C. Interaction of elongation factor 1 with aminoacylated brome mosaic virus and tRNA's. J Virol. 1976 Oct;20(1):117–122. doi: 10.1128/jvi.20.1.117-122.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beachy R. N., Zaitlin M. Replication of tobacco mosiac virus, VI Replicative intermediate and TMV-RNA-related RNAs associated with polyribosomes. Virology. 1975 Jan;63(1):84–97. doi: 10.1016/0042-6822(75)90373-6. [DOI] [PubMed] [Google Scholar]
  7. Bienz K., Egger D., Pfister T. Characteristics of the poliovirus replication complex. Arch Virol Suppl. 1994;9:147–157. doi: 10.1007/978-3-7091-9326-6_15. [DOI] [PubMed] [Google Scholar]
  8. Blackwell J. L., Brinton M. A. Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA. J Virol. 1997 Sep;71(9):6433–6444. doi: 10.1128/jvi.71.9.6433-6444.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blum H., Gross H. J., Beier H. The expression of the TMV-specific 30-kDa protein in tobacco protoplasts is strongly and selectively enhanced by actinomycin. Virology. 1989 Mar;169(1):51–61. doi: 10.1016/0042-6822(89)90040-8. [DOI] [PubMed] [Google Scholar]
  10. Blumenthal T., Carmichael G. G. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
  11. Buck K. W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res. 1996;47:159–251. doi: 10.1016/S0065-3527(08)60736-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carr J. P., Marsh L. E., Lomonossoff G. P., Sekiya M. E., Zaitlin M. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):397–404. doi: 10.1094/mpmi-5-397. [DOI] [PubMed] [Google Scholar]
  13. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  14. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clore A. M., Dannenhoffer J. M., Larkins B. A. EF-1[alpha] Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endosperm Cells. Plant Cell. 1996 Nov;8(11):2003–2014. doi: 10.1105/tpc.8.11.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Culver J. N., Lehto K., Close S. M., Hilf M. E., Dawson W. O. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2055–2059. doi: 10.1073/pnas.90.5.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Das T., Mathur M., Gupta A. K., Janssen G. M., Banerjee A. K. RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1449–1454. doi: 10.1073/pnas.95.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dawson W. O., Beck D. L., Knorr D. A., Grantham G. L. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1832–1836. doi: 10.1073/pnas.83.6.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dawson W. O., Lewandowski D. J., Hilf M. E., Bubrick P., Raffo A. J., Shaw J. J., Grantham G. L., Desjardins P. R. A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology. 1989 Sep;172(1):285–292. doi: 10.1016/0042-6822(89)90130-x. [DOI] [PubMed] [Google Scholar]
  20. Dawson W. O. Time-course of actinomycin D inhibition of tobacco mosaic virus multiplication relative to the rate of spread of the infection. Intervirology. 1978;9(5):304–309. doi: 10.1159/000148948. [DOI] [PubMed] [Google Scholar]
  21. Dawson W. O., White J. L. A temperature-sensitive mutant of tobacco mosaic virus deficient in synthesis of single-stranded RNA. Virology. 1979 Feb;93(1):104–110. doi: 10.1016/0042-6822(79)90279-4. [DOI] [PubMed] [Google Scholar]
  22. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461–467. doi: 10.1093/protein/3.6.461. [DOI] [PubMed] [Google Scholar]
  23. Dunigan D. D., Zaitlin M. Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylyltransferase-like activity. J Biol Chem. 1990 May 15;265(14):7779–7786. [PubMed] [Google Scholar]
  24. Esau K., Cronshaw J. Relation of tobacco mosaic virus to the host cells. J Cell Biol. 1967 Jun;33(3):665–678. doi: 10.1083/jcb.33.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Esau K., Cronshaw J. Tubular components in cells of healthy and tobacco mosaic virus-infected Nicotiana. Virology. 1967 Sep;33(1):26–35. doi: 10.1016/0042-6822(67)90090-6. [DOI] [PubMed] [Google Scholar]
  26. Evans R. K., Haley B. E., Roth D. A. Photoaffinity labeling of a viral induced protein from tobacco. Characterization of nucleotide-binding properties. J Biol Chem. 1985 Jun 25;260(12):7800–7804. [PubMed] [Google Scholar]
  27. Felden B., Florentz C., Giegé R., Westhof E. A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5' upstream pseudoknots in the 3' terminus of tobacco mosaic virus RNA. RNA. 1996 Mar;2(3):201–212. [PMC free article] [PubMed] [Google Scholar]
  28. Friedman R. M. Replicative intermediate of an arbovirus. J Virol. 1968 Jun;2(6):547–552. doi: 10.1128/jvi.2.6.547-552.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gallie D. R., Kobayashi M. The role of the 3'-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene. 1994 May 16;142(2):159–165. doi: 10.1016/0378-1119(94)90256-9. [DOI] [PubMed] [Google Scholar]
  30. Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Garcia-Barrio M. T., Naranda T., Vazquez de Aldana C. R., Cuesta R., Hinnebusch A. G., Hershey J. W., Tamame M. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Dev. 1995 Jul 15;9(14):1781–1796. doi: 10.1101/gad.9.14.1781. [DOI] [PubMed] [Google Scholar]
  32. Goelet P., Karn J. Tobacco mosaic virus induces the synthesis of a family of 3' coterminal messenger RNAs and their complements. J Mol Biol. 1982 Jan 25;154(3):541–550. doi: 10.1016/s0022-2836(82)80013-2. [DOI] [PubMed] [Google Scholar]
  33. Goelet P., Lomonossoff G. P., Butler P. J., Akam M. E., Gait M. J., Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5818–5822. doi: 10.1073/pnas.79.19.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Goodwin J. B., Skuzeski J. M., Dreher T. W. Characterization of chimeric turnip yellow mosaic virus genomes that are infectious in the absence of aminoacylation. Virology. 1997 Mar 31;230(1):113–124. doi: 10.1006/viro.1997.8475. [DOI] [PubMed] [Google Scholar]
  35. Guilley H., Jonard G., Kukla B., Richards K. E. Sequence of 1000 nucleotides at the 3' end of tobacco mosaic virus RNA. Nucleic Acids Res. 1979 Apr;6(4):1287–1308. doi: 10.1093/nar/6.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gultyaev A. P., van Batenburg E., Pleij C. W. Similarities between the secondary structure of satellite tobacco mosaic virus and tobamovirus RNAs. J Gen Virol. 1994 Oct;75(Pt 10):2851–2856. doi: 10.1099/0022-1317-75-10-2851. [DOI] [PubMed] [Google Scholar]
  37. Hamamoto H., Watanabe Y., Kamada H., Okada Y. Amino acid changes in the putative replicase of tomato mosaic tobamovirus that overcome resistance in Tm-1 tomato. J Gen Virol. 1997 Feb;78(Pt 2):461–464. doi: 10.1099/0022-1317-78-2-461. [DOI] [PubMed] [Google Scholar]
  38. Hannig E. M. Protein synthesis in eukaryotic organisms: new insights into the function of translation initiation factor eIF-3. Bioessays. 1995 Nov;17(11):915–919. doi: 10.1002/bies.950171103. [DOI] [PubMed] [Google Scholar]
  39. Hansen J. L., Long A. M., Schultz S. C. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure. 1997 Aug 15;5(8):1109–1122. doi: 10.1016/s0969-2126(97)00261-x. [DOI] [PubMed] [Google Scholar]
  40. Hayes R. J., Buck K. W. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell. 1990 Oct 19;63(2):363–368. doi: 10.1016/0092-8674(90)90169-f. [DOI] [PubMed] [Google Scholar]
  41. Heinlein M., Padgett H. S., Gens J. S., Pickard B. G., Casper S. J., Epel B. L., Beachy R. N. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell. 1998 Jul;10(7):1107–1120. doi: 10.1105/tpc.10.7.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Heufler C., Browning K. S., Ravel J. M. Properties of the subunits of wheat germ initiation factor 3. Biochim Biophys Acta. 1988 Nov 10;951(1):182–190. doi: 10.1016/0167-4781(88)90039-5. [DOI] [PubMed] [Google Scholar]
  43. Hills G. J., Plaskitt K. A., Young N. D., Dunigan D. D., Watts J. W., Wilson T. M., Zaitlin M. Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus proteins. Virology. 1987 Dec;161(2):488–496. doi: 10.1016/0042-6822(87)90143-7. [DOI] [PubMed] [Google Scholar]
  44. Hunter T., Jackson R., Zimmern D. Multiple proteins and subgenomic mRNAs may be derived from a single open reading frame on tobacco mosaic virus RNA. Nucleic Acids Res. 1983 Feb 11;11(3):801–821. doi: 10.1093/nar/11.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ishikawa M., Kroner P., Ahlquist P., Meshi T. Biological activities of hybrid RNAs generated by 3'-end exchanges between tobacco mosaic and brome mosaic viruses. J Virol. 1991 Jul;65(7):3451–3459. doi: 10.1128/jvi.65.7.3451-3459.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ishikawa M., Meshi T., Motoyoshi F., Takamatsu N., Okada Y. In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res. 1986 Nov 11;14(21):8291–8305. doi: 10.1093/nar/14.21.8291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ishikawa M., Meshi T., Ohno T., Okada Y. Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. J Virol. 1991 Feb;65(2):861–868. doi: 10.1128/jvi.65.2.861-868.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ishikawa M., Meshi T., Watanabe Y., Okada Y. Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3' noncoding regions. Virology. 1988 May;164(1):290–293. doi: 10.1016/0042-6822(88)90648-4. [DOI] [PubMed] [Google Scholar]
  49. Ishikawa M., Naito S., Ohno T. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J Virol. 1993 Sep;67(9):5328–5338. doi: 10.1128/jvi.67.9.5328-5338.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jackson A. O., Mitchell D. M., Siegel A. Replication of tobacco mosaic virus. I. Isolation and characterization of double-stranded forms of ribonucleic acid. Virology. 1971 Jul;45(1):182–191. doi: 10.1016/0042-6822(71)90125-5. [DOI] [PubMed] [Google Scholar]
  51. Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Joshi R. L., Ravel J. M., Haenni A. L. Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1 [alpha]. Search for a function. EMBO J. 1986 Jun;5(6):1143–1148. doi: 10.1002/j.1460-2075.1986.tb04339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Keith J., Fraenkel-Conrat H. Tobacco mosaic virus RNA carries 5'-terminal triphosphorylated guanosine blocked by 5'-linked 7-methylguanosine. FEBS Lett. 1975 Sep 1;57(1):31–34. doi: 10.1016/0014-5793(75)80145-1. [DOI] [PubMed] [Google Scholar]
  54. Khromykh A. A., Kenney M. T., Westaway E. G. trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol. 1998 Sep;72(9):7270–7279. doi: 10.1128/jvi.72.9.7270-7279.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kielland-Brandt M. C. Studies on biosynthesis of tobacco mosaic virus. VII. Radioactivity of plus and minus strands in different forms of viral RNA after labelling of infected tobacco leaves. J Mol Biol. 1974 Aug 15;87(3):489–503. doi: 10.1016/0022-2836(74)90099-0. [DOI] [PubMed] [Google Scholar]
  56. Kohm B. A., Goulden M. G., Gilbert J. E., Kavanagh T. A., Baulcombe D. C. A Potato Virus X Resistance Gene Mediates an Induced, Nonspecific Resistance in Protoplasts. Plant Cell. 1993 Aug;5(8):913–920. doi: 10.1105/tpc.5.8.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Koonin E. V., Dolja V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol. 1993;28(5):375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
  58. Koonin E. V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol. 1991 Sep;72(Pt 9):2197–2206. doi: 10.1099/0022-1317-72-9-2197. [DOI] [PubMed] [Google Scholar]
  59. Lai M. M. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology. 1998 Apr 25;244(1):1–12. doi: 10.1006/viro.1998.9098. [DOI] [PubMed] [Google Scholar]
  60. Leathers V., Tanguay R., Kobayashi M., Gallie D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993 Sep;13(9):5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lehto K., Bubrick P., Dawson W. O. Time course of TMV 30K protein accumulation in intact leaves. Virology. 1990 Jan;174(1):290–293. doi: 10.1016/0042-6822(90)90077-5. [DOI] [PubMed] [Google Scholar]
  62. Lehto K., Grantham G. L., Dawson W. O. Insertion of sequences containing the coat protein subgenomic RNA promoter and leader in front of the tobacco mosaic virus 30K ORF delays its expression and causes defective cell-to-cell movement. Virology. 1990 Jan;174(1):145–157. doi: 10.1016/0042-6822(90)90063-w. [DOI] [PubMed] [Google Scholar]
  63. Lemm J. A., Bergqvist A., Read C. M., Rice C. M. Template-dependent initiation of Sindbis virus RNA replication in vitro. J Virol. 1998 Aug;72(8):6546–6553. doi: 10.1128/jvi.72.8.6546-6553.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Lemm J. A., Rümenapf T., Strauss E. G., Strauss J. H., Rice C. M. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J. 1994 Jun 15;13(12):2925–2934. doi: 10.1002/j.1460-2075.1994.tb06587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Litvak S., Tarragó A., Tarragó-Litvak L., Allende J. E. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nat New Biol. 1973 Jan 17;241(107):88–90. doi: 10.1038/newbio241088a0. [DOI] [PubMed] [Google Scholar]
  66. Longstaff M., Brigneti G., Boccard F., Chapman S., Baulcombe D. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 1993 Feb;12(2):379–386. doi: 10.1002/j.1460-2075.1993.tb05669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Marsh L. E., Dreher T. W., Hall T. C. Mutational analysis of the core and modulator sequences of the BMV RNA3 subgenomic promoter. Nucleic Acids Res. 1988 Feb 11;16(3):981–995. doi: 10.1093/nar/16.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Meshi T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Okada Y. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J. 1988 Jun;7(6):1575–1581. doi: 10.1002/j.1460-2075.1988.tb02982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Meshi T., Watanabe Y., Saito T., Sugimoto A., Maeda T., Okada Y. Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J. 1987 Sep;6(9):2557–2563. doi: 10.1002/j.1460-2075.1987.tb02544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Miller W. A., Dreher T. W., Hall T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature. 1985 Jan 3;313(5997):68–70. doi: 10.1038/313068a0. [DOI] [PubMed] [Google Scholar]
  71. Miranda G., Schuppli D., Barrera I., Hausherr C., Sogo J. M., Weber H. Recognition of bacteriophage Qbeta plus strand RNA as a template by Qbeta replicase: role of RNA interactions mediated by ribosomal proteins S1 and host factor. J Mol Biol. 1997 Apr 18;267(5):1089–1103. doi: 10.1006/jmbi.1997.0939. [DOI] [PubMed] [Google Scholar]
  72. Ngon A Yassi M., Dodds J. A. Specific sequence changes in the 5'-terminal region of the genome of satellite tobacco mosaic virus are required for adaptation to tobacco mosaic virus. J Gen Virol. 1998 Apr;79(Pt 4):905–913. doi: 10.1099/0022-1317-79-4-905. [DOI] [PubMed] [Google Scholar]
  73. Nilsson-Tillgren T., Kielland-Brandt M. C., Bekke B. Studies on the biosynthesis of tobacco mosaic virus. VI. On the subcellular localization of double-stranded viral RNA. Mol Gen Genet. 1974;128(2):157–169. doi: 10.1007/BF02654488. [DOI] [PubMed] [Google Scholar]
  74. Nilsson-Tillgren T. Studies on the biosynthesis of TMV. 3. Isolation and characterization of the replicative form and the replicative intermediate RNA. Mol Gen Genet. 1970;109(3):246–256. doi: 10.1007/BF00267013. [DOI] [PubMed] [Google Scholar]
  75. Nishiguchi M., Kikuchi S., Kiho Y., Ohno T., Meshi T., Okada Y. Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Res. 1985 Aug 12;13(15):5585–5590. doi: 10.1093/nar/13.15.5585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Novak J. E., Kirkegaard K. Coupling between genome translation and replication in an RNA virus. Genes Dev. 1994 Jul 15;8(14):1726–1737. doi: 10.1101/gad.8.14.1726. [DOI] [PubMed] [Google Scholar]
  77. O'Reilly E. K., Wang Z., French R., Kao C. C. Interactions between the structural domains of the RNA replication proteins of plant-infecting RNA viruses. J Virol. 1998 Sep;72(9):7160–7169. doi: 10.1128/jvi.72.9.7160-7169.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Ogawa T., Watanabe Y., Meshi T., Okada Y. Trans complementation of virus-encoded replicase components of tobacco mosaic virus. Virology. 1991 Dec;185(2):580–584. doi: 10.1016/0042-6822(91)90528-j. [DOI] [PubMed] [Google Scholar]
  79. Ogawa T., Watanabe Y., Okada Y. cis-acting elements for in trans complementation of replication-defective mutant of tobacco mosaic virus. Virology. 1992 Nov;191(1):454–458. doi: 10.1016/0042-6822(92)90209-8. [DOI] [PubMed] [Google Scholar]
  80. Ohshima K., Taniyama T., Yamanaka T., Ishikawa M., Naito S. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology. 1998 Apr 10;243(2):472–481. doi: 10.1006/viro.1998.9078. [DOI] [PubMed] [Google Scholar]
  81. Osman T. A., Buck K. W. Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J Virol. 1996 Sep;70(9):6227–6234. doi: 10.1128/jvi.70.9.6227-6234.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Osman T. A., Buck K. W. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol. 1997 Aug;71(8):6075–6082. doi: 10.1128/jvi.71.8.6075-6082.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Quadt R., Kao C. C., Browning K. S., Hershberger R. P., Ahlquist P. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1498–1502. doi: 10.1073/pnas.90.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Raffo A. J., Dawson W. O. Construction of tobacco mosaic virus subgenomic replicons that are replicated and spread systemically in tobacco plants. Virology. 1991 Sep;184(1):277–289. doi: 10.1016/0042-6822(91)90844-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ralph R. K., Bullivant S., Wojcik S. J. Cytoplasmic membranes, a possible site of tobacco mosaic virus RNA replication. Virology. 1971 Mar;43(3):713–716. doi: 10.1016/0042-6822(71)90295-9. [DOI] [PubMed] [Google Scholar]
  86. Restrepo-Hartwig M. A., Ahlquist P. Brome mosaic virus helicase- and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol. 1996 Dec;70(12):8908–8916. doi: 10.1128/jvi.70.12.8908-8916.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Routh G., Dodds J. A., Fitzmaurice L., Mirkov T. E. Characterization of deletion and frameshift mutants of satellite tobacco mosaic virus. Virology. 1995 Sep 10;212(1):121–127. doi: 10.1006/viro.1995.1460. [DOI] [PubMed] [Google Scholar]
  88. Routh G., Yassi M. N., Rao A. L., Mirkov T. E., Dodds J. A. Replication of wild-type and mutant clones of satellite tobacco mosaic virus in Nicotiana benthamiana protoplasts. J Gen Virol. 1997 Jun;78(Pt 6):1271–1275. doi: 10.1099/0022-1317-78-6-1271. [DOI] [PubMed] [Google Scholar]
  89. Schaad M. C., Jensen P. E., Carrington J. C. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J. 1997 Jul 1;16(13):4049–4059. doi: 10.1093/emboj/16.13.4049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Shirako Y., Strauss J. H. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol. 1994 Mar;68(3):1874–1885. doi: 10.1128/jvi.68.3.1874-1885.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Skuzeski J. M., Bozarth C. S., Dreher T. W. The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability. J Virol. 1996 Apr;70(4):2107–2115. doi: 10.1128/jvi.70.4.2107-2115.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Takamatsu N., Ishikawa M., Meshi T., Okada Y. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 1987 Feb;6(2):307–311. doi: 10.1002/j.1460-2075.1987.tb04755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Takamatsu N., Watanabe Y., Iwasaki T., Shiba T., Meshi T., Okada Y. Deletion analysis of the 5' untranslated leader sequence of tobacco mosaic virus RNA. J Virol. 1991 Mar;65(3):1619–1622. doi: 10.1128/jvi.65.3.1619-1622.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Takamatsu N., Watanabe Y., Meshi T., Okada Y. Mutational analysis of the pseudoknot region in the 3' noncoding region of tobacco mosaic virus RNA. J Virol. 1990 Aug;64(8):3686–3693. doi: 10.1128/jvi.64.8.3686-3693.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Tanguay R. L., Gallie D. R. Isolation and characterization of the 102-kilodalton RNA-binding protein that binds to the 5' and 3' translational enhancers of tobacco mosaic virus RNA. J Biol Chem. 1996 Jun 14;271(24):14316–14322. doi: 10.1074/jbc.271.24.14316. [DOI] [PubMed] [Google Scholar]
  97. Waggoner S., Sarnow P. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J Virol. 1998 Aug;72(8):6699–6709. doi: 10.1128/jvi.72.8.6699-6709.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Wang H. L., O'Rear J., Stollar V. Mutagenesis of the Sindbis virus nsP1 protein: effects on methyltransferase activity and viral infectivity. Virology. 1996 Mar 15;217(2):527–531. doi: 10.1006/viro.1996.0147. [DOI] [PubMed] [Google Scholar]
  99. Watanabe Y., Kishibayashi N., Motoyoshi F., Okada Y. Characterization of Tm-1 gene action on replication of common isolates and a resistance-breaking isolate of TMV. Virology. 1987 Dec;161(2):527–532. doi: 10.1016/0042-6822(87)90147-4. [DOI] [PubMed] [Google Scholar]
  100. Watanabe Y., Morita N., Nishiguchi M., Okada Y. Attenuated strains of tobacco mosaic virus. Reduced synthesis of a viral protein with a cell-to-cell movement function. J Mol Biol. 1987 Apr 20;194(4):699–704. doi: 10.1016/0022-2836(87)90247-6. [DOI] [PubMed] [Google Scholar]
  101. Wu S. X., Ahlquist P., Kaesberg P. Active complete in vitro replication of nodavirus RNA requires glycerophospholipid. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11136–11140. doi: 10.1073/pnas.89.23.11136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Wu X., Shaw J. G. Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology. 1997 Dec 22;239(2):426–434. doi: 10.1006/viro.1997.8870. [DOI] [PubMed] [Google Scholar]
  103. Wu X., Shaw J. Bidirectional uncoating of the genomic RNA of a helical virus. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2981–2984. doi: 10.1073/pnas.93.7.2981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Yamafuji R., Watanabe Y., Meshi T., Okada Y. Replication of TMV-L and Lta1 RNAs and their recombinants in TMV-resistant Tm-1 tomato protoplasts. Virology. 1991 Jul;183(1):99–105. doi: 10.1016/0042-6822(91)90122-r. [DOI] [PubMed] [Google Scholar]
  105. Young N., Forney J., Zaitlin M. Tobacco mosaic virus replicase and replicative structures. J Cell Sci Suppl. 1987;7:277–285. doi: 10.1242/jcs.1987.supplement_7.19. [DOI] [PubMed] [Google Scholar]
  106. Yuzhakov A., Turner J., O'Donnell M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell. 1996 Sep 20;86(6):877–886. doi: 10.1016/s0092-8674(00)80163-4. [DOI] [PubMed] [Google Scholar]
  107. Zimmern D. The 5' end group of tobacco mosaic virus RNA is m7G5' ppp5' Gp. Nucleic Acids Res. 1975 Jul;2(7):1189–1201. doi: 10.1093/nar/2.7.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. van Belkum A., Abrahams J. P., Pleij C. W., Bosch L. Five pseudoknots are present at the 204 nucleotides long 3' noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res. 1985 Nov 11;13(21):7673–7686. doi: 10.1093/nar/13.21.7673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES