Abstract
Since the discovery of a power law scaling between the mean and variance of natural populations, this phenomenon has been observed for a variety of species. Here, we show that the same form of power law scaling also occurs in measles case reports in England and Wales. Remarkably this power law holds over four orders of magnitude. We consider how the natural experiment of vaccination affects the slope of the power law. By examining simple generic models, we are able to predict the effects of stochasticity and coupling and we propose a new phenomenon associated with the critical community size.
Full Text
The Full Text of this article is available as a PDF (220.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
- Boag B., Hackett C. A., Topham P. B. The use of Taylor's power law to describe the aggregated distribution of gastro-intestinal nematodes of sheep. Int J Parasitol. 1992 May;22(3):267–270. doi: 10.1016/s0020-7519(05)80003-7. [DOI] [PubMed] [Google Scholar]
- Bolker B. Chaos and complexity in measles models: a comparative numerical study. IMA J Math Appl Med Biol. 1993;10(2):83–95. doi: 10.1093/imammb/10.2.83. [DOI] [PubMed] [Google Scholar]
- Dobson A. P. The population dynamics of competition between parasites. Parasitology. 1985 Oct;91(Pt 2):317–347. doi: 10.1017/s0031182000057401. [DOI] [PubMed] [Google Scholar]
- Earn D. J., Rohani P., Grenfell B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc Biol Sci. 1998 Jan 7;265(1390):7–10. doi: 10.1098/rspb.1998.0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson N. M., Nokes D. J., Anderson R. M. Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake. Math Biosci. 1996 Dec;138(2):101–130. doi: 10.1016/s0025-5564(96)00127-7. [DOI] [PubMed] [Google Scholar]
- Finkenstädt B., Grenfell B. Empirical determinants of measles metapopulation dynamics in England and Wales. Proc Biol Sci. 1998 Feb 7;265(1392):211–220. doi: 10.1098/rspb.1998.0284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkenstädt B., Keeling M., Grenfell B. Patterns of density dependence in measles dynamics. Proc Biol Sci. 1998 May 7;265(1398):753–762. doi: 10.1098/rspb.1998.0357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grenfell B. T. Gastrointestinal nematode parasites and the stability and productivity of intensive ruminant grazing systems. Philos Trans R Soc Lond B Biol Sci. 1988 Oct 31;321(1207):541–563. doi: 10.1098/rstb.1988.0107. [DOI] [PubMed] [Google Scholar]
- Keeling M. J., Grenfell B. T. Disease extinction and community size: modeling the persistence of measles. Science. 1997 Jan 3;275(5296):65–67. doi: 10.1126/science.275.5296.65. [DOI] [PubMed] [Google Scholar]
- Keeling M. J. Modelling the persistence of measles. Trends Microbiol. 1997 Dec;5(12):513–518. doi: 10.1016/S0966-842X(97)01147-5. [DOI] [PubMed] [Google Scholar]
- May R. M., Anderson R. M. Population biology of infectious diseases: Part II. Nature. 1979 Aug 9;280(5722):455–461. doi: 10.1038/280455a0. [DOI] [PubMed] [Google Scholar]
- Olsen L. F., Schaffer W. M. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science. 1990 Aug 3;249(4968):499–504. doi: 10.1126/science.2382131. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1997.0143. [DOI] [PMC free article] [Google Scholar]
- Rand D. A., Wilson H. B. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc Biol Sci. 1991 Nov 22;246(1316):179–184. doi: 10.1098/rspb.1991.0142. [DOI] [PubMed] [Google Scholar]
- Rohani P., Earn D. J., Finkenstädt B., Grenfell B. T. Population dynamic interference among childhood diseases. Proc Biol Sci. 1998 Nov 7;265(1410):2033–2041. doi: 10.1098/rspb.1998.0537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–191. doi: 10.1093/imammb/1.2.169. [DOI] [PubMed] [Google Scholar]