Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jul 29;354(1387):1155–1163. doi: 10.1098/rstb.1999.0471

Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.

P J Magistretti 1, L Pellerin 1
PMCID: PMC1692634  PMID: 10466143

Abstract

Despite striking advances in functional brain imaging, the cellular and molecular mechanisms that underlie the signals detected by these techniques are still largely unknown. The basic physiological principle of functional imaging is represented by the tight coupling existing between neuronal activity and the associated local increase in both blood flow and energy metabolism. Positron emission tomography (PET) signals detect blood flow, oxygen consumption and glucose use associated with neuronal activity; the degree of blood oxygenation is currently thought to contribute to the signal detected with functional magnetic resonance imaging, while magnetic resonance spectroscopy (MRS) identifies the spatio-temporal pattern of the activity-dependent appearance of certain metabolic intermediates such as glucose or lactate. Recent studies, including those of neurotransmitter-regulated metabolic fluxes in purified preparations and analyses of the cellular localization of enzymes and transporters involved in energy metabolism, as well as in vivo microdialysis and MRS approaches have identified the neurotransmitter glutamate and astrocytes, a specific type of glial cell, as pivotal elements in the coupling of synaptic activity with energy metabolism. Astrocytes are ideally positioned to sense increases in synaptic activity and to couple them with energy metabolism. Indeed they possess specialized processes that cover the surface of intraparenchymal capillaries, suggesting that astrocytes may be a likely site of prevalent glucose uptake. Other astrocyte processes are wrapped around synaptic contacts which possess receptors and reuptake sites for neurotransmitters. Glutamate stimulates glucose uptake into astrocytes. This effect is mediated by specific glutamate transporters present on these cells. The activity of these transporters, which is tightly coupled to the synaptic release of glutamate and operates the clearance of glutamate from the extracellular space, is driven by the electrochemical gradient of Na+. This Na(+)-dependent uptake of glutamate into astrocytes triggers a cascade of molecular events involving the Na+/K(+)-ATPase leading to the glycolytic processing of glucose and the release of lactate by astrocytes. The stoichiometry of this process is such that for one glutamate molecule taken up with three Na+ ions, one glucose molecule enters an astrocyte, two ATP molecules are produced through aerobic glycolysis and two lactate molecules are released. Within the astrocyte, one ATP molecule fuels one 'turn of the pump' while the other provides the energy needed to convert glutamate to glutamine by glutamine synthase. Evidence has been accumulated from structural as well as functional studies indicating that, under aerobic conditions, lactate may be the preferred energy substrate of activated neurons. Indeed, in the presence of oxygen, lactate is converted to pyruvate, which can be processed through the tricarboxylic acid cycle and the associated oxidative phosphorylation, to yield 17 ATP molecules per lactate molecule. These data suggest that during activation the brain may transiently resort to aerobic glycolysis occurring in astrocytes, followed by the oxidation of lactate by neurons. The proposed model provides a direct mechanism to couple synaptic activity with glucose use and is consistent with the notion that the signals detected during physiological activation with 18F-deoxyglucose (DG)-PET may reflect predominantly uptake of the tracer into astrocytes. This conclusion does not question the validity of the 2-DG-based techniques, rather it provides a cellular and molecular basis for these functional brain imaging techniques.

Full Text

The Full Text of this article is available as a PDF (308.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barres B. A. New roles for glia. J Neurosci. 1991 Dec;11(12):3685–3694. doi: 10.1523/JNEUROSCI.11-12-03685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergles D. E., Jahr C. E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci. 1998 Oct 1;18(19):7709–7716. doi: 10.1523/JNEUROSCI.18-19-07709.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergles D. E., Jahr C. E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron. 1997 Dec;19(6):1297–1308. doi: 10.1016/s0896-6273(00)80420-1. [DOI] [PubMed] [Google Scholar]
  4. Bittar P. G., Charnay Y., Pellerin L., Bouras C., Magistretti P. J. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996 Nov;16(6):1079–1089. doi: 10.1097/00004647-199611000-00001. [DOI] [PubMed] [Google Scholar]
  5. Bongaarts J. Can the growing human population feed itself? Sci Am. 1994 Mar;270(3):36–42. doi: 10.1038/scientificamerican0394-36. [DOI] [PubMed] [Google Scholar]
  6. Bowman C. L., Kimelberg H. K. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature. 1984 Oct 18;311(5987):656–659. doi: 10.1038/311656a0. [DOI] [PubMed] [Google Scholar]
  7. Bröer S., Rahman B., Pellegri G., Pellerin L., Martin J. L., Verleysdonk S., Hamprecht B., Magistretti P. J. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997 Nov 28;272(48):30096–30102. doi: 10.1074/jbc.272.48.30096. [DOI] [PubMed] [Google Scholar]
  8. Cholet N., Bonvento G., Seylaz J. Effect of neuronal NO synthase inhibition on the cerebral vasodilatory response to somatosensory stimulation. Brain Res. 1996 Feb 5;708(1-2):197–200. doi: 10.1016/0006-8993(95)01387-3. [DOI] [PubMed] [Google Scholar]
  9. Cholet N., Seylaz J., Lacombe P., Bonvento G. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J Cereb Blood Flow Metab. 1997 Nov;17(11):1191–1201. doi: 10.1097/00004647-199711000-00008. [DOI] [PubMed] [Google Scholar]
  10. Danbolt N. C. The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol. 1994 Nov;44(4):377–396. doi: 10.1016/0301-0082(94)90033-7. [DOI] [PubMed] [Google Scholar]
  11. Demestre M., Boutelle M., Fillenz M. Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J Physiol. 1997 Mar 15;499(Pt 3):825–832. doi: 10.1113/jphysiol.1997.sp021971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fellows L. K., Boutelle M. G., Fillenz M. Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem. 1993 Apr;60(4):1258–1263. doi: 10.1111/j.1471-4159.1993.tb03285.x. [DOI] [PubMed] [Google Scholar]
  13. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984 Jan;42(1):1–11. doi: 10.1111/j.1471-4159.1984.tb09689.x. [DOI] [PubMed] [Google Scholar]
  14. Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
  15. Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
  16. Frahm J., Krüger G., Merboldt K. D., Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996 Feb;35(2):143–148. doi: 10.1002/mrm.1910350202. [DOI] [PubMed] [Google Scholar]
  17. Fray A. E., Forsyth R. J., Boutelle M. G., Fillenz M. The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J Physiol. 1996 Oct 1;496(Pt 1):49–57. doi: 10.1113/jphysiol.1996.sp021664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gasic G. P., Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol. 1992;54:507–536. doi: 10.1146/annurev.ph.54.030192.002451. [DOI] [PubMed] [Google Scholar]
  19. Hu Y., Wilson G. S. Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem. 1997 Apr;68(4):1745–1752. doi: 10.1046/j.1471-4159.1997.68041745.x. [DOI] [PubMed] [Google Scholar]
  20. Hyder F., Chase J. R., Behar K. L., Mason G. F., Siddeek M., Rothman D. L., Shulman R. G. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7612–7617. doi: 10.1073/pnas.93.15.7612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Izumi Y., Benz A. M., Katsuki H., Zorumski C. F. Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J Neurosci. 1997 Dec 15;17(24):9448–9457. doi: 10.1523/JNEUROSCI.17-24-09448.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kartner N., Ling V. Multidrug resistance in cancer. Sci Am. 1989 Mar;260(3):44–51. doi: 10.1038/scientificamerican0389-44. [DOI] [PubMed] [Google Scholar]
  23. Larrabee M. G. Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J Neurochem. 1995 Apr;64(4):1734–1741. doi: 10.1046/j.1471-4159.1995.64041734.x. [DOI] [PubMed] [Google Scholar]
  24. Lipton P., Robacker K. Glycolysis and brain function: [K+]o stimulation of protein synthesis and K+ uptake require glycolysis. Fed Proc. 1983 Sep;42(12):2875–2880. [PubMed] [Google Scholar]
  25. Magistretti P. J., Pellerin L. Metabolic coupling during activation. A cellular view. Adv Exp Med Biol. 1997;413:161–166. doi: 10.1007/978-1-4899-0056-2_18. [DOI] [PubMed] [Google Scholar]
  26. Magistretti P. J., Pellerin L., Rothman D. L., Shulman R. G. Energy on demand. Science. 1999 Jan 22;283(5401):496–497. doi: 10.1126/science.283.5401.496. [DOI] [PubMed] [Google Scholar]
  27. Malonek D., Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996 Apr 26;272(5261):551–554. doi: 10.1126/science.272.5261.551. [DOI] [PubMed] [Google Scholar]
  28. Martinez-Hernandez A., Bell K. P., Norenberg M. D. Glutamine synthetase: glial localization in brain. Science. 1977 Mar 25;195(4284):1356–1358. doi: 10.1126/science.14400. [DOI] [PubMed] [Google Scholar]
  29. Morgello S., Uson R. R., Schwartz E. J., Haber R. S. The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia. 1995 May;14(1):43–54. doi: 10.1002/glia.440140107. [DOI] [PubMed] [Google Scholar]
  30. O'Kusky J., Colonnier M. A laminar analysis of the number of neurons, glia, and synapses in the adult cortex (area 17) of adult macaque monkeys. J Comp Neurol. 1982 Sep 20;210(3):278–290. doi: 10.1002/cne.902100307. [DOI] [PubMed] [Google Scholar]
  31. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pardridge W. M., Oldendorf W. H. Transport of metabolic substrates through the blood-brain barrier. J Neurochem. 1977 Jan;28(1):5–12. doi: 10.1111/j.1471-4159.1977.tb07702.x. [DOI] [PubMed] [Google Scholar]
  33. Parker J. C., Hoffman J. F. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol. 1967 Mar;50(4):893–916. doi: 10.1085/jgp.50.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pellerin L., Magistretti P. J. Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Dev Neurosci. 1996;18(5-6):336–342. doi: 10.1159/000111426. [DOI] [PubMed] [Google Scholar]
  35. Pellerin L., Magistretti P. J. Glutamate uptake stimulates Na+,K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem. 1997 Nov;69(5):2132–2137. doi: 10.1046/j.1471-4159.1997.69052132.x. [DOI] [PubMed] [Google Scholar]
  36. Pellerin L., Pellegri G., Martin J. L., Magistretti P. J. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3990–3995. doi: 10.1073/pnas.95.7.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Phelps M. E., Huang S. C., Hoffman E. J., Selin C., Sokoloff L., Kuhl D. E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979 Nov;6(5):371–388. doi: 10.1002/ana.410060502. [DOI] [PubMed] [Google Scholar]
  38. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5829–5831. doi: 10.1073/pnas.88.13.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Robinson M. B., Dowd L. A. Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol. 1997;37:69–115. doi: 10.1016/s1054-3589(08)60948-5. [DOI] [PubMed] [Google Scholar]
  40. Rothstein J. D., Martin L., Levey A. I., Dykes-Hoberg M., Jin L., Wu D., Nash N., Kuncl R. W. Localization of neuronal and glial glutamate transporters. Neuron. 1994 Sep;13(3):713–725. doi: 10.1016/0896-6273(94)90038-8. [DOI] [PubMed] [Google Scholar]
  41. Roy C. S., Sherrington C. S. On the Regulation of the Blood-supply of the Brain. J Physiol. 1890 Jan;11(1-2):85–158.17. doi: 10.1113/jphysiol.1890.sp000321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schurr A., Miller J. J., Payne R. S., Rigor B. M. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci. 1999 Jan 1;19(1):34–39. doi: 10.1523/JNEUROSCI.19-01-00034.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schurr A., West C. A., Rigor B. M. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988 Jun 3;240(4857):1326–1328. doi: 10.1126/science.3375817. [DOI] [PubMed] [Google Scholar]
  44. Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):316–321. doi: 10.1073/pnas.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  46. Takahashi S., Driscoll B. F., Law M. J., Sokoloff L. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4616–4620. doi: 10.1073/pnas.92.10.4616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vaucher E., Borredon J., Bonvento G., Seylaz J., Lacombe P. Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J Cereb Blood Flow Metab. 1997 Jun;17(6):686–694. doi: 10.1097/00004647-199706000-00010. [DOI] [PubMed] [Google Scholar]
  48. Villringer A., Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995 Fall;7(3):240–276. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES