Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Jul 29;354(1387):1165–1177. doi: 10.1098/rstb.1999.0472

In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics.

D L Rothman 1, N R Sibson 1, F Hyder 1, J Shen 1, K L Behar 1, R G Shulman 1
PMCID: PMC1692640  PMID: 10466144

Abstract

In this article we review recent studies, primarily from our laboratory, using 13C NMR (nuclear magnetic resonance) to non-invasively measure the rate of the glutamate-glutamine neurotransmitter cycle in the cortex of rats and humans. In the glutamate-glutamine cycle, glutamate released from nerve terminals is taken up by surrounding glial cells and returned to the nerve terminals as glutamine. 13C NMR studies have shown that the rate of the glutamate-glutamine cycle is extremely high in both the rat and human cortex, and that it increases with brain activity in an approximately 1:1 molar ratio with oxidative glucose metabolism. The measured ratio, in combination with proposals based on isolated cell studies by P. J. Magistretti and co-workers, has led to the development of a model in which the majority of brain glucose oxidation is mechanistically coupled to the glutamate-glutamine cycle. This model provides the first testable mechanistic relationship between cortical glucose metabolism and a specific neuronal activity. We review here the experimental evidence for this model as well as implications for blood oxygenation level dependent magnetic resonance imaging and positron emission tomography functional imaging studies of brain function.

Full Text

The Full Text of this article is available as a PDF (305.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERL S., TAKAGAKI G., CLARKE D. D., WAELSCH H. Carbon dioxide fixation in the brain. J Biol Chem. 1962 Aug;237:2570–2573. [PubMed] [Google Scholar]
  2. Badar-Goffer R. S., Ben-Yoseph O., Bachelard H. S., Morris P. G. Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J. 1992 Feb 15;282(Pt 1):225–230. doi: 10.1042/bj2820225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng S. C. CO2 fixation in the nervous tissue. Int Rev Neurobiol. 1971;14:125–157. doi: 10.1016/s0074-7742(08)60184-1. [DOI] [PubMed] [Google Scholar]
  4. Conti F., Minelli A. Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase. J Histochem Cytochem. 1994 Jun;42(6):717–726. doi: 10.1177/42.6.7910617. [DOI] [PubMed] [Google Scholar]
  5. Cooper A. J., McDonald J. M., Gelbard A. S., Gledhill R. F., Duffy T. E. The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem. 1979 Jun 25;254(12):4982–4992. [PubMed] [Google Scholar]
  6. Cooper A. J., Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987 Apr;67(2):440–519. doi: 10.1152/physrev.1987.67.2.440. [DOI] [PubMed] [Google Scholar]
  7. Danbolt N. C., Storm-Mathisen J., Kanner B. I. An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992 Nov;51(2):295–310. doi: 10.1016/0306-4522(92)90316-t. [DOI] [PubMed] [Google Scholar]
  8. Dejong C. H., Deutz N. E., Soeters P. B. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J Neurochem. 1993 Mar;60(3):1047–1057. doi: 10.1111/j.1471-4159.1993.tb03253.x. [DOI] [PubMed] [Google Scholar]
  9. Erecińska M., Silver I. A. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol. 1990;35(4):245–296. doi: 10.1016/0301-0082(90)90013-7. [DOI] [PubMed] [Google Scholar]
  10. Fitzpatrick S. M., Hetherington H. P., Behar K. L., Shulman R. G. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem. 1989 Mar;52(3):741–749. doi: 10.1111/j.1471-4159.1989.tb02517.x. [DOI] [PubMed] [Google Scholar]
  11. Fitzpatrick S. M., Hetherington H. P., Behar K. L., Shulman R. G. The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab. 1990 Mar;10(2):170–179. doi: 10.1038/jcbfm.1990.32. [DOI] [PubMed] [Google Scholar]
  12. Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Shulman G. I., Prichard J. W., Shulman R. G. Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J Neurochem. 1994 Oct;63(4):1377–1385. doi: 10.1046/j.1471-4159.1994.63041377.x. [DOI] [PubMed] [Google Scholar]
  13. Gruetter R., Novotny E. J., Boulware S. D., Rothman D. L., Mason G. F., Shulman G. I., Shulman R. G., Tamborlane W. V. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1109–1112. doi: 10.1073/pnas.89.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gruetter R., Seaquist E. R., Kim S., Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci. 1998;20(4-5):380–388. doi: 10.1159/000017334. [DOI] [PubMed] [Google Scholar]
  15. Hawkins R. A., Mans A. M., Davis D. W., Viña J. R., Hibbard L. S. Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position. Am J Physiol. 1985 Jan;248(1 Pt 1):C170–C176. doi: 10.1152/ajpcell.1985.248.1.C170. [DOI] [PubMed] [Google Scholar]
  16. Hawkins R. A., Miller A. L., Nielsen R. C., Veech R. L. The acute action of ammonia on rat brain metabolism in vivo. Biochem J. 1973 Aug;134(4):1001–1008. doi: 10.1042/bj1341001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hyder F., Chase J. R., Behar K. L., Mason G. F., Siddeek M., Rothman D. L., Shulman R. G. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7612–7617. doi: 10.1073/pnas.93.15.7612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hyder F., Rothman D. L., Mason G. F., Rangarajan A., Behar K. L., Shulman R. G. Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H[13C] nuclear magnetic resonance study. J Cereb Blood Flow Metab. 1997 Oct;17(10):1040–1047. doi: 10.1097/00004647-199710000-00005. [DOI] [PubMed] [Google Scholar]
  19. Kadekaro M., Crane A. M., Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A. 1985 Sep;82(17):6010–6013. doi: 10.1073/pnas.82.17.6010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanamori K., Ross B. D. 15N n.m.r. measurement of the in vivo rate of glutamine synthesis and utilization at steady state in the brain of the hyperammonaemic rat. Biochem J. 1993 Jul 15;293(Pt 2):461–468. doi: 10.1042/bj2930461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kanamori K., Ross B. D. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J. 1995 Jan 1;305(Pt 1):329–336. doi: 10.1042/bj3050329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kvamme E., Torgner I. A., Svenneby G. Glutaminase from mammalian tissues. Methods Enzymol. 1985;113:241–256. doi: 10.1016/s0076-6879(85)13033-8. [DOI] [PubMed] [Google Scholar]
  23. Künnecke B., Cerdan S., Seelig J. Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed. 1993 Jul-Aug;6(4):264–277. doi: 10.1002/nbm.1940060406. [DOI] [PubMed] [Google Scholar]
  24. Lapidot A., Gopher A. Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J Biol Chem. 1994 Nov 4;269(44):27198–27208. [PubMed] [Google Scholar]
  25. Manor D., Rothman D. L., Mason G. F., Hyder F., Petroff O. A., Behar K. L. The rate of turnover of cortical GABA from [1-13C]glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA). Neurochem Res. 1996 Sep;21(9):1031–1041. doi: 10.1007/BF02532413. [DOI] [PubMed] [Google Scholar]
  26. Martinez-Hernandez A., Bell K. P., Norenberg M. D. Glutamine synthetase: glial localization in brain. Science. 1977 Mar 25;195(4284):1356–1358. doi: 10.1126/science.14400. [DOI] [PubMed] [Google Scholar]
  27. Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G., Novotny E. J. Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab. 1995 Jan;15(1):12–25. doi: 10.1038/jcbfm.1995.2. [DOI] [PubMed] [Google Scholar]
  28. Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab. 1992 May;12(3):434–447. doi: 10.1038/jcbfm.1992.61. [DOI] [PubMed] [Google Scholar]
  29. Maycox P. R., Hell J. W., Jahn R. Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 1990 Mar;13(3):83–87. doi: 10.1016/0166-2236(90)90178-d. [DOI] [PubMed] [Google Scholar]
  30. Meister A. Glutamine synthetase from mammalian tissues. Methods Enzymol. 1985;113:185–199. doi: 10.1016/s0076-6879(85)13030-2. [DOI] [PubMed] [Google Scholar]
  31. Nicholls D., Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990 Nov;11(11):462–468. doi: 10.1016/0165-6147(90)90129-v. [DOI] [PubMed] [Google Scholar]
  32. Ogawa S., Menon R. S., Kim S. G., Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct. 1998;27:447–474. doi: 10.1146/annurev.biophys.27.1.447. [DOI] [PubMed] [Google Scholar]
  33. Ottersen O. P., Zhang N., Walberg F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience. 1992;46(3):519–534. doi: 10.1016/0306-4522(92)90141-n. [DOI] [PubMed] [Google Scholar]
  34. Peng L., Hertz L., Huang R., Sonnewald U., Petersen S. B., Westergaard N., Larsson O., Schousboe A. Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci. 1993;15(3-5):367–377. doi: 10.1159/000111357. [DOI] [PubMed] [Google Scholar]
  35. Raichle M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):765–772. doi: 10.1073/pnas.95.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rothman D. L., Novotny E. J., Shulman G. I., Howseman A. M., Petroff O. A., Mason G., Nixon T., Hanstock C. C., Prichard J. W., Shulman R. G. 1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9603–9606. doi: 10.1073/pnas.89.20.9603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothman D. L., Petroff O. A., Behar K. L., Mattson R. H. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5662–5666. doi: 10.1073/pnas.90.12.5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rothstein J. D., Martin L., Levey A. I., Dykes-Hoberg M., Jin L., Wu D., Nash N., Kuncl R. W. Localization of neuronal and glial glutamate transporters. Neuron. 1994 Sep;13(3):713–725. doi: 10.1016/0896-6273(94)90038-8. [DOI] [PubMed] [Google Scholar]
  39. Schousboe A., Westergaard N., Sonnewald U., Petersen S. B., Huang R., Peng L., Hertz L. Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci. 1993;15(3-5):359–366. doi: 10.1159/000111356. [DOI] [PubMed] [Google Scholar]
  40. Shank R. P., Campbell G. L. Alpha-ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J Neurochem. 1984 Apr;42(4):1153–1161. doi: 10.1111/j.1471-4159.1984.tb12724.x. [DOI] [PubMed] [Google Scholar]
  41. Shank R. P., Leo G. C., Zielke H. R. Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J Neurochem. 1993 Jul;61(1):315–323. doi: 10.1111/j.1471-4159.1993.tb03570.x. [DOI] [PubMed] [Google Scholar]
  42. Shen J., Shungu D. C., Rothman D. L. In vivo chemical shift imaging of gamma-aminobutyric acid in the human brain. Magn Reson Med. 1999 Jan;41(1):35–42. doi: 10.1002/(sici)1522-2594(199901)41:1<35::aid-mrm7>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  43. Shen J., Sibson N. R., Cline G., Behar K. L., Rothman D. L., Shulman R. G. 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci. 1998;20(4-5):434–443. doi: 10.1159/000017341. [DOI] [PubMed] [Google Scholar]
  44. Shulman R. G., Rothman D. L., Hyder F. Stimulated changes in localized cerebral energy consumption under anesthesia. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3245–3250. doi: 10.1073/pnas.96.6.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shulman R. G., Rothman D. L. Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11993–11998. doi: 10.1073/pnas.95.20.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sibson N. R., Dhankhar A., Mason G. F., Behar K. L., Rothman D. L., Shulman R. G. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2699–2704. doi: 10.1073/pnas.94.6.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):316–321. doi: 10.1073/pnas.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sibson N. R., Shen J., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronalactivity. Dev Neurosci. 1998;20(4-5):321–330. doi: 10.1159/000017327. [DOI] [PubMed] [Google Scholar]
  49. Sonnewald U., Westergaard N., Schousboe A., Svendsen J. S., Unsgård G., Petersen S. B. Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int. 1993 Jan;22(1):19–29. doi: 10.1016/0197-0186(93)90064-c. [DOI] [PubMed] [Google Scholar]
  50. Tsacopoulos M., Magistretti P. J. Metabolic coupling between glia and neurons. J Neurosci. 1996 Feb 1;16(3):877–885. doi: 10.1523/JNEUROSCI.16-03-00877.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. WAELSCH H., BERL H. W., ROSSI C. A., CLARKE D. D., PURPURA D. P. QUANTITATIVE ASPECTS OF CO2 FIXATION IN MAMMALIAN BRAIN IN VIVO. J Neurochem. 1964 Oct;11:717–728. doi: 10.1111/j.1471-4159.1964.tb06117.x. [DOI] [PubMed] [Google Scholar]
  52. van den Berg C. J., Garfinkel D. A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J. 1971 Jun;123(2):211–218. doi: 10.1042/bj1230211. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES