Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Aug 29;355(1400):1031–1041. doi: 10.1098/rstb.2000.0640

Host factors influencing viral persistence.

A R Thomsen 1, A Nansen 1, S O Andreasen 1, D Wodarz 1, J P Christensen 1
PMCID: PMC1692806  PMID: 11186304

Abstract

With the aim of characterizing the antiviral immune response to a non-cytocidal virus, we studied the outcome of lymphocytic choriomeningitis virus infection in a number of gene knockout mouse strains. Two virus strains differing markedly in their capacity to spread and replicate inside the murine host were used. Our results reveal that very different outcomes may be observed depending on virus strain and immunocompetence of the host. Thus while CD4+ cells are not critical during the initial phase of virus control, infectious virus reappear in mice lacking CD4+ cells, B cells or CD40 ligand. Reappearance of virus is associated with impaired long-term CD8+ T-cell mediated immune surveillance, and the time to virus resurgence is inversely correlated to the replication rate of the virus. Our studies also reveal that interferon-gamma is a central cytokine, and depending on the rate of virus replication, mice lacking the ability to produce interferon-gamma may develop either a severe, mostly fatal, T-cell mediated wasting syndrome or a chronic infection characterized by long-term coexistence of antiviral cytotoxic T lymphocytes and infectious virus. Mathematical modelling indicates that these different outcomes may be explained in relatively simple mathematical terms. This suggests that modelling may be used as a means to predict critical host and virus parameters. Therefore, combining mathematical modelling with precise, quantitative, in vivo analyses looks to be a promising approach in addressing central quantitative issues in immunobiology.

Full Text

The Full Text of this article is available as a PDF (350.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Butler L. D., Bhatti L. T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. J Virol. 1988 Jun;62(6):2102–2106. doi: 10.1128/jvi.62.6.2102-2106.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed R., Oldstone M. B. Organ-specific selection of viral variants during chronic infection. J Exp Med. 1988 May 1;167(5):1719–1724. doi: 10.1084/jem.167.5.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altman J. D., Moss P. A., Goulder P. J., Barouch D. H., McHeyzer-Williams M. G., Bell J. I., McMichael A. J., Davis M. M. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996 Oct 4;274(5284):94–96. doi: 10.1126/science.274.5284.94. [DOI] [PubMed] [Google Scholar]
  4. Andreasen S. O., Christensen J. E., Marker O., Thomsen A. R. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol. 2000 Apr 1;164(7):3689–3697. doi: 10.4049/jimmunol.164.7.3689. [DOI] [PubMed] [Google Scholar]
  5. Asano M. S., Ahmed R. CD8 T cell memory in B cell-deficient mice. J Exp Med. 1996 May 1;183(5):2165–2174. doi: 10.1084/jem.183.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banchereau J., Steinman R. M. Dendritic cells and the control of immunity. Nature. 1998 Mar 19;392(6673):245–252. doi: 10.1038/32588. [DOI] [PubMed] [Google Scholar]
  7. Battegay M., Kyburz D., Hengartner H., Zinkernagel R. M. Enhancement of disease by neutralizing antiviral antibodies in the absence of primed antiviral cytotoxic T cells. Eur J Immunol. 1993 Dec;23(12):3236–3241. doi: 10.1002/eji.1830231229. [DOI] [PubMed] [Google Scholar]
  8. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T. W., Zinkernagel R. M. Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol. 1994 Jul;68(7):4700–4704. doi: 10.1128/jvi.68.7.4700-4704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bennett S. R., Carbone F. R., Karamalis F., Flavell R. A., Miller J. F., Heath W. R. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998 Jun 4;393(6684):478–480. doi: 10.1038/30996. [DOI] [PubMed] [Google Scholar]
  10. Borrow P., Tishon A., Lee S., Xu J., Grewal I. S., Oldstone M. B., Flavell R. A. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med. 1996 May 1;183(5):2129–2142. doi: 10.1084/jem.183.5.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bro-Jørgensen K. The interplay between lymphocytic choriomeningitis virus, immune function, and hemopoiesis in mice. Adv Virus Res. 1978;22:327–369. doi: 10.1016/s0065-3527(08)60777-0. [DOI] [PubMed] [Google Scholar]
  12. Busch D. H., Pilip I., Pamer E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J Exp Med. 1998 Jul 6;188(1):61–70. doi: 10.1084/jem.188.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Butz E. A., Bevan M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity. 1998 Feb;8(2):167–175. doi: 10.1016/s1074-7613(00)80469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chan O. T., Madaio M. P., Shlomchik M. J. The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev. 1999 Jun;169:107–121. doi: 10.1111/j.1600-065x.1999.tb01310.x. [DOI] [PubMed] [Google Scholar]
  15. Christensen J. P., Marker O., Thomsen A. R. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice. Scand J Immunol. 1994 Oct;40(4):373–382. doi: 10.1111/j.1365-3083.1994.tb03477.x. [DOI] [PubMed] [Google Scholar]
  16. Christensen J. P., Stenvang J. P., Marker O., Thomsen A. R. Characterization of virus-primed CD8+ T cells with a type 1 cytokine profile. Int Immunol. 1996 Sep;8(9):1453–1461. doi: 10.1093/intimm/8.9.1453. [DOI] [PubMed] [Google Scholar]
  17. Christoffersen P. J., Volkert M., Rygaard J. Immunological unresponsiveness of nude mice to LCM virus infection. Acta Pathol Microbiol Scand C. 1976 Dec;84C(6):520–523. doi: 10.1111/j.1699-0463.1976.tb00064.x. [DOI] [PubMed] [Google Scholar]
  18. Ciurea A., Klenerman P., Hunziker L., Horvath E., Odermatt B., Ochsenbein A. F., Hengartner H., Zinkernagel R. M. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11964–11969. doi: 10.1073/pnas.96.21.11964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  20. Davidson W. F. Cellular requirements for the induction of cytotoxic T cells in vitro. Immunol Rev. 1977;35:261–304. doi: 10.1111/j.1600-065x.1977.tb00242.x. [DOI] [PubMed] [Google Scholar]
  21. Di Rosa F., Matzinger P. Long-lasting CD8 T cell memory in the absence of CD4 T cells or B cells. J Exp Med. 1996 May 1;183(5):2153–2163. doi: 10.1084/jem.183.5.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ehl S., Klenerman P., Zinkernagel R. M., Bocharov G. The impact of variation in the number of CD8(+) T-cell precursors on the outcome of virus infection. Cell Immunol. 1998 Oct 10;189(1):67–73. doi: 10.1006/cimm.1998.1344. [DOI] [PubMed] [Google Scholar]
  23. Flynn K. J., Belz G. T., Altman J. D., Ahmed R., Woodland D. L., Doherty P. C. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity. 1998 Jun;8(6):683–691. doi: 10.1016/s1074-7613(00)80573-7. [DOI] [PubMed] [Google Scholar]
  24. Grewal I. S., Flavell R. A. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111–135. doi: 10.1146/annurev.immunol.16.1.111. [DOI] [PubMed] [Google Scholar]
  25. Grewal I. S., Flavell R. A. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev. 1996 Oct;153:85–106. doi: 10.1111/j.1600-065x.1996.tb00921.x. [DOI] [PubMed] [Google Scholar]
  26. Grewal I. S., Foellmer H. G., Grewal K. D., Xu J., Hardardottir F., Baron J. L., Janeway C. A., Jr, Flavell R. A. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science. 1996 Sep 27;273(5283):1864–1867. doi: 10.1126/science.273.5283.1864. [DOI] [PubMed] [Google Scholar]
  27. Homann D., Tishon A., Berger D. P., Weigle W. O., von Herrath M. G., Oldstone M. B. Evidence for an underlying CD4 helper and CD8 T-cell defect in B-cell-deficient mice: failure to clear persistent virus infection after adoptive immunotherapy with virus-specific memory cells from muMT/muMT mice. J Virol. 1998 Nov;72(11):9208–9216. doi: 10.1128/jvi.72.11.9208-9216.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoshino Y., Morishima T., Kimura H., Nishikawa K., Tsurumi T., Kuzushima K. Antigen-driven expansion and contraction of CD8+-activated T cells in primary EBV infection. J Immunol. 1999 Nov 15;163(10):5735–5740. [PubMed] [Google Scholar]
  29. Hou S., Hyland L., Ryan K. W., Portner A., Doherty P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994 Jun 23;369(6482):652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
  30. King C. C., de Fries R., Kolhekar S. R., Ahmed R. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection. J Virol. 1990 Nov;64(11):5611–5616. doi: 10.1128/jvi.64.11.5611-5616.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kägi D., Hengartner H. Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr Opin Immunol. 1996 Aug;8(4):472–477. doi: 10.1016/s0952-7915(96)80033-1. [DOI] [PubMed] [Google Scholar]
  32. Kägi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K. J., Podack E. R., Zinkernagel R. M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994 May 5;369(6475):31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  33. Kündig T. M., Bachmann M. F., Ohashi P. S., Pircher H., Hengartner H., Zinkernagel R. M. On T cell memory: arguments for antigen dependence. Immunol Rev. 1996 Apr;150:63–90. doi: 10.1111/j.1600-065x.1996.tb00696.x. [DOI] [PubMed] [Google Scholar]
  34. Lafferty K. J., Cunningham A. J. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975 Feb;53(1):27–42. doi: 10.1038/icb.1975.3. [DOI] [PubMed] [Google Scholar]
  35. Laman J. D., Claassen E., Noelle R. J. Functions of CD40 and its ligand, gp39 (CD40L). Crit Rev Immunol. 1996;16(1):59–108. doi: 10.1615/critrevimmunol.v16.i1.40. [DOI] [PubMed] [Google Scholar]
  36. Lau L. L., Jamieson B. D., Somasundaram T., Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994 Jun 23;369(6482):648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
  37. Lehmann-Grube F., Löhler J., Utermöhlen O., Gegin C. Antiviral immune responses of lymphocytic choriomeningitis virus-infected mice lacking CD8+ T lymphocytes because of disruption of the beta 2-microglobulin gene. J Virol. 1993 Jan;67(1):332–339. doi: 10.1128/jvi.67.1.332-339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Leist T., Althage A., Haenseler E., Hengartner H., Zinkernagel R. M. Major histocompatibility complex-linked susceptibility or resistance to disease caused by a noncytopathic virus varies with the disease parameter evaluated. J Exp Med. 1989 Jul 1;170(1):269–277. doi: 10.1084/jem.170.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Liu Y., Janeway C. A., Jr Microbial induction of co-stimulatory activity for CD4 T-cell growth. Int Immunol. 1991 Apr;3(4):323–332. doi: 10.1093/intimm/3.4.323. [DOI] [PubMed] [Google Scholar]
  40. Marker O., Thomsen A. R. Clearance of virus by T lymphocytes mediating delayed type hypersensitivity. Curr Top Microbiol Immunol. 1987;134:145–184. doi: 10.1007/978-3-642-71726-0_7. [DOI] [PubMed] [Google Scholar]
  41. Marker O., Thomsen A. R., Volkert M., Hansen B. L., Clemmensen I. H. High-dose survival in the lymphocytic choriomeningitis virus infection is accompanied by suppressed DTH but unaffected T-cell cytotoxicity. Scand J Immunol. 1985 Jan;21(1):81–91. doi: 10.1111/j.1365-3083.1985.tb01406.x. [DOI] [PubMed] [Google Scholar]
  42. Marker O., Thorner Andersen G., Volkert M. The interplay between target organ concentrations of lymphocytic choriomeningitis virus and cell mediated immunity in baby mice. Acta Pathol Microbiol Scand C. 1976 Feb;84(1):23–30. doi: 10.1111/j.1699-0463.1976.tb03595.x. [DOI] [PubMed] [Google Scholar]
  43. Marker O., Volkert M. Studies on cell-mediated immunity to lymphocytic choriomeningitis virus in mice. J Exp Med. 1973 Jun 1;137(6):1511–1525. doi: 10.1084/jem.137.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Matloubian M., Concepcion R. J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994 Dec;68(12):8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Moskophidis D., Battegay M., Bruendler M. A., Laine E., Gresser I., Zinkernagel R. M. Resistance of lymphocytic choriomeningitis virus to alpha/beta interferon and to gamma interferon. J Virol. 1994 Mar;68(3):1951–1955. doi: 10.1128/jvi.68.3.1951-1955.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Moskophidis D., Battegay M., van den Broek M., Laine E., Hoffmann-Rohrer U., Zinkernagel R. M. Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J Gen Virol. 1995 Feb;76(Pt 2):381–391. doi: 10.1099/0022-1317-76-2-381. [DOI] [PubMed] [Google Scholar]
  47. Moskophidis D., Cobbold S. P., Waldmann H., Lehmann-Grube F. Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. J Virol. 1987 Jun;61(6):1867–1874. doi: 10.1128/jvi.61.6.1867-1874.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Moskophidis D., Lechner F., Hengartner H., Zinkernagel R. M. MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. J Immunol. 1994 May 15;152(10):4976–4983. [PubMed] [Google Scholar]
  49. Moskophidis D., Lechner F., Pircher H., Zinkernagel R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993 Apr 22;362(6422):758–761. doi: 10.1038/362758a0. [DOI] [PubMed] [Google Scholar]
  50. Murali-Krishna K., Altman J. D., Suresh M., Sourdive D. J., Zajac A. J., Miller J. D., Slansky J., Ahmed R. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity. 1998 Feb;8(2):177–187. doi: 10.1016/s1074-7613(00)80470-7. [DOI] [PubMed] [Google Scholar]
  51. Murali-Krishna K., Lau L. L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999 Nov 12;286(5443):1377–1381. doi: 10.1126/science.286.5443.1377. [DOI] [PubMed] [Google Scholar]
  52. Nansen A., Jensen T., Christensen J. P., Andreasen S. O., Röpke C., Marker O., Thomsen A. R. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol. 1999 Dec 1;163(11):6114–6122. [PubMed] [Google Scholar]
  53. Nowak M. A., Bangham C. R. Population dynamics of immune responses to persistent viruses. Science. 1996 Apr 5;272(5258):74–79. doi: 10.1126/science.272.5258.74. [DOI] [PubMed] [Google Scholar]
  54. Pfau C. J., Valenti J. K., Pevear D. C., Hunt K. D. Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated murine infections. J Exp Med. 1982 Jul 1;156(1):79–89. doi: 10.1084/jem.156.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Planz O., Ehl S., Furrer E., Horvath E., Bründler M. A., Hengartner H., Zinkernagel R. M. A critical role for neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6874–6879. doi: 10.1073/pnas.94.13.6874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ridge J. P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998 Jun 4;393(6684):474–478. doi: 10.1038/30989. [DOI] [PubMed] [Google Scholar]
  57. Schoenberger S. P., Toes R. E., van der Voort E. I., Offringa R., Melief C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998 Jun 4;393(6684):480–483. doi: 10.1038/31002. [DOI] [PubMed] [Google Scholar]
  58. Seder R. A., Le Gros G. G. The functional role of CD8+ T helper type 2 cells. J Exp Med. 1995 Jan 1;181(1):5–7. doi: 10.1084/jem.181.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Serreze D. V., Chapman H. D., Varnum D. S., Hanson M. S., Reifsnyder P. C., Richard S. D., Fleming S. A., Leiter E. H., Shultz L. D. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new "speed congenic" stock of NOD.Ig mu null mice. J Exp Med. 1996 Nov 1;184(5):2049–2053. doi: 10.1084/jem.184.5.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tanchot C., Rocha B. The organization of mature T-cell pools. Immunol Today. 1998 Dec;19(12):575–579. doi: 10.1016/s0167-5699(98)01344-9. [DOI] [PubMed] [Google Scholar]
  61. Thomsen A. R., Johansen J., Marker O., Christensen J. P. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol. 1996 Oct 1;157(7):3074–3080. [PubMed] [Google Scholar]
  62. Thomsen A. R., Marker O. MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel. J Immunol. 1989 Feb 15;142(4):1333–1341. [PubMed] [Google Scholar]
  63. Thomsen A. R., Marker O. The complementary roles of cellular and humoral immunity in resistance to re-infection with LCM virus. Immunology. 1988 Sep;65(1):9–15. [PMC free article] [PubMed] [Google Scholar]
  64. Thomsen A. R., Nansen A., Christensen J. P., Andreasen S. O., Marker O. CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol. 1998 Nov 1;161(9):4583–4590. [PubMed] [Google Scholar]
  65. Thomsen A. R., Nansen A., Christensen J. P. Virus-induced T cell activation and the inflammatory response. Curr Top Microbiol Immunol. 1998;231:99–123. doi: 10.1007/978-3-642-71987-5_7. [DOI] [PubMed] [Google Scholar]
  66. Thomsen A. R., Volkert M., Marker O. The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand C. 1979 Feb;87C(1):47–54. [PubMed] [Google Scholar]
  67. Tishon A., Lewicki H., Rall G., Von Herrath M., Oldstone M. B. An essential role for type 1 interferon-gamma in terminating persistent viral infection. Virology. 1995 Sep 10;212(1):244–250. doi: 10.1006/viro.1995.1477. [DOI] [PubMed] [Google Scholar]
  68. Volkert M., Bro-Jorgensen K., Marker O. Persistent LCM virus infection in the mouse. Immunity and tolerance. Bull World Health Organ. 1975;52(4-6):471–478. [PMC free article] [PubMed] [Google Scholar]
  69. Volkert M., Lundstedt C. The provocation of latent lymphocytic choriomeningitis virus infections in mice by treatment with antilymphocytic serum. J Exp Med. 1968 Feb 1;127(2):327–339. doi: 10.1084/jem.127.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Walsh C. M., Matloubian M., Liu C. C., Ueda R., Kurahara C. G., Christensen J. L., Huang M. T., Young J. D., Ahmed R., Clark W. R. Immune function in mice lacking the perforin gene. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10854–10858. doi: 10.1073/pnas.91.23.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Whitmire J. K., Flavell R. A., Grewal I. S., Larsen C. P., Pearson T. C., Ahmed R. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J Immunol. 1999 Sep 15;163(6):3194–3201. [PubMed] [Google Scholar]
  72. Whitmire J. K., Slifka M. K., Grewal I. S., Flavell R. A., Ahmed R. CD40 ligand-deficient mice generate a normal primary cytotoxic T-lymphocyte response but a defective humoral response to a viral infection. J Virol. 1996 Dec;70(12):8375–8381. doi: 10.1128/jvi.70.12.8375-8381.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wodarz D., Klenerman P., Nowak M. A. Dynamics of cytotoxic T-lymphocyte exhaustion. Proc Biol Sci. 1998 Feb 7;265(1392):191–203. doi: 10.1098/rspb.1998.0282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wodarz D., Page K. M., Arnaout R. A., Thomsen A. R., Lifson J. D., Nowak M. A. A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment. Philos Trans R Soc Lond B Biol Sci. 2000 Mar 29;355(1395):329–343. doi: 10.1098/rstb.2000.0570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wolf S. D., Dittel B. N., Hardardottir F., Janeway C. A., Jr Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med. 1996 Dec 1;184(6):2271–2278. doi: 10.1084/jem.184.6.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wu Y., Liu Y. Viral induction of co-stimulatory activity on antigen-presenting cells bypasses the need for CD4+ T-cell help in CD8+ T-cell responses. Curr Biol. 1994 Jun 1;4(6):499–505. doi: 10.1016/s0960-9822(00)00110-x. [DOI] [PubMed] [Google Scholar]
  77. Zajac A. J., Blattman J. N., Murali-Krishna K., Sourdive D. J., Suresh M., Altman J. D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998 Dec 21;188(12):2205–2213. doi: 10.1084/jem.188.12.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zinkernagel R. M., Moskophidis D., Kündig T., Oehen S., Pircher H., Hengartner H. Effector T-cell induction and T-cell memory versus peripheral deletion of T cells. Immunol Rev. 1993 Jun;133:199–223. doi: 10.1111/j.1600-065x.1993.tb01517.x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES