Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Aug 29;355(1400):1043–1050. doi: 10.1098/rstb.2000.0641

Scrapie infections initiated at varying doses: an analysis of 117 titration experiments.

A R McLean 1, C J Bostock 1
PMCID: PMC1692811  PMID: 11186305

Abstract

An analysis of 117 titration experiments in the murine scrapie model is presented. The experiments encompass 30 years' work and a wide range of experimental conditions. To check that the experimental designs were reasonably consistent over time, comparisons were made of size, duration, source of inoculum, etc., in each experiment. These comparisons revealed no systematic trends that would render invalid comparisons across experiments. For 114 of the experiments it was possible to calculate the dose at which half of the challenged animals were infected (the ID50). These 114 experiments were then combined on the basis of relative dose (i.e. tenfold dilution relative to the ID50). This created a data set in which over 4000 animals were challenged with doses of scrapie ranging from four orders of magnitude below to five orders of magnitude above the ID50. Analysis of this data reveals that mean incubation periods rise linearly with logarithmic decreases in dose. A one unit increase in relative dose (i.e. a tenfold increase in actual dose) will, on average, decrease the incubation period by 25 days. At ID50 the average incubation period in this data set is 300 days. Within a single dose, in a single experimental model, incubation periods have a distribution close to normal. Variability in incubation period also rises linearly as dose decreases. There is no age or sex effect upon the probability of infection, but female mice have incubation periods that are, on average, nine days shorter than their male counterparts and young mice have incubation periods that are longer by seven days. Although many of these patterns are apparent in the results of single titration curves, they can be more rigorously investigated by considering the outcome for thousands of mice.

Full Text

The Full Text of this article is available as a PDF (177.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce M. E., Dickinson A. G. Genetic control of amyloid plaque production and incubation period in scrapie-infected mice. J Neuropathol Exp Neurol. 1985 May;44(3):285–294. doi: 10.1097/00005072-198505000-00006. [DOI] [PubMed] [Google Scholar]
  2. Bruce M. E., Fraser H. Effects of age on cerebral amyloid plaques in murine scrapie. Neuropathol Appl Neurobiol. 1982 Jan-Feb;8(1):71–74. doi: 10.1111/j.1365-2990.1982.tb00259.x. [DOI] [PubMed] [Google Scholar]
  3. Bruce M. E., McConnell I., Fraser H., Dickinson A. G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol. 1991 Mar;72(Pt 3):595–603. doi: 10.1099/0022-1317-72-3-595. [DOI] [PubMed] [Google Scholar]
  4. Bruce M. E., Will R. G., Ironside J. W., McConnell I., Drummond D., Suttie A., McCardle L., Chree A., Hope J., Birkett C. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature. 1997 Oct 2;389(6650):498–501. doi: 10.1038/39057. [DOI] [PubMed] [Google Scholar]
  5. Collinge J., Sidle K. C., Meads J., Ironside J., Hill A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature. 1996 Oct 24;383(6602):685–690. doi: 10.1038/383685a0. [DOI] [PubMed] [Google Scholar]
  6. Come J. H., Fraser P. E., Lansbury P. T., Jr A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5959–5963. doi: 10.1073/pnas.90.13.5959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cousens S. N., Vynnycky E., Zeidler M., Will R. G., Smith P. G. Predicting the CJD epidemic in humans. Nature. 1997 Jan 16;385(6613):197–198. doi: 10.1038/385197a0. [DOI] [PubMed] [Google Scholar]
  8. Dickinson A. G., Fraser H. Genetical control of the concentration of ME7 scrapie agent in mouse spleen. J Comp Pathol. 1969 Jul;79(3):363–366. doi: 10.1016/0021-9975(69)90051-6. [DOI] [PubMed] [Google Scholar]
  9. Dickinson A. G., Fraser H., Meikle V. M., Outram G. W. Competition between different scrapie agents in mice. Nat New Biol. 1972 Jun 21;237(77):244–245. doi: 10.1038/newbio237244a0. [DOI] [PubMed] [Google Scholar]
  10. Dickinson A. G., Meikle V. M., Fraser H. Genetical control of the concentration of ME7 scrapie agent in the brain of mice. J Comp Pathol. 1969 Jan;79(1):15–22. doi: 10.1016/0021-9975(69)90021-8. [DOI] [PubMed] [Google Scholar]
  11. Fraser H., Dickinson A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature. 1970 May 2;226(5244):462–463. doi: 10.1038/226462a0. [DOI] [PubMed] [Google Scholar]
  12. Fraser H., Dickinson A. G. Studies of the lymphoreticular system in the pathogenesis of scrapie: the role of spleen and thymus. J Comp Pathol. 1978 Oct;88(4):563–573. doi: 10.1016/0021-9975(78)90010-5. [DOI] [PubMed] [Google Scholar]
  13. Ghani A. C., Ferguson N. M., Donnelly C. A., Hagenaars T. J., Anderson R. M. Epidemiological determinants of the pattern and magnitude of the vCJD epidemic in Great Britain. Proc Biol Sci. 1998 Dec 22;265(1413):2443–2452. doi: 10.1098/rspb.1998.0596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kimberlin R. H., Walker C. A. Incubation periods in six models of intraperitoneally injected scrapie depend mainly on the dynamics of agent replication within the nervous system and not the lymphoreticular system. J Gen Virol. 1988 Dec;69(Pt 12):2953–2960. doi: 10.1099/0022-1317-69-12-2953. [DOI] [PubMed] [Google Scholar]
  15. Payne R. J., Krakauer D. C. The paradoxical dynamics of prion disease latency. J Theor Biol. 1998 Apr 21;191(4):345–352. doi: 10.1006/jtbi.1997.0627. [DOI] [PubMed] [Google Scholar]
  16. Payne R. J., Krakauer D. C. The spatial dynamics of prion disease. Proc Biol Sci. 1998 Dec 7;265(1412):2341–2346. doi: 10.1098/rspb.1998.0581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scott M. R., Groth D., Tatzelt J., Torchia M., Tremblay P., DeArmond S. J., Prusiner S. B. Propagation of prion strains through specific conformers of the prion protein. J Virol. 1997 Dec;71(12):9032–9044. doi: 10.1128/jvi.71.12.9032-9044.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scott M. R., Will R., Ironside J., Nguyen H. O., Tremblay P., DeArmond S. J., Prusiner S. B. Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15137–15142. doi: 10.1073/pnas.96.26.15137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wadsworth J. D., Jackson G. S., Hill A. F., Collinge J. Molecular biology of prion propagation. Curr Opin Genet Dev. 1999 Jun;9(3):338–345. doi: 10.1016/s0959-437x(99)80051-3. [DOI] [PubMed] [Google Scholar]
  20. Weissmann C. A 'unified theory' of prion propagation. Nature. 1991 Aug 22;352(6337):679–683. doi: 10.1038/352679a0. [DOI] [PubMed] [Google Scholar]
  21. Will R. G., Cousens S. N., Farrington C. P., Smith P. G., Knight R. S., Ironside J. W. Deaths from variant Creutzfeldt-Jakob disease. Lancet. 1999 Mar 20;353(9157):979–979. doi: 10.1016/s0140-6736(99)01160-5. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES