Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Aug 29;355(1400):1093–1101. doi: 10.1098/rstb.2000.0647

Quantitative analysis of the CD8+ T-cell response to readily eliminated and persistent viruses.

P C Doherty 1, J M Riberdy 1, G T Belz 1
PMCID: PMC1692813  PMID: 11186311

Abstract

The recent development of techniques for the direct staining of peptide-specific CD8+ T cells has revolutionized the analysis of cell-mediated immunity (CMI) in virus infections. This approach has been used to quantify the acute and long-term consequences of infecting laboratory mice with the readily eliminated influenza A viruses (fluA) and a persistent gammaherpesvirus (gammaHV). It is now, for the first time, possible to work with real numbers in the analysis of CD8+ T CMI, and to define various characteristics of the responding lymphocytes both by direct flow cytometric analysis and by sorting for further in vitro manipulation. Relatively little has yet been done from the latter aspect, though we are rapidly accumulating a mass of numerical data. The acute, antigen-driven phases of the fluA and gammaHV-specific response look rather similar, but CD8+ T-cell numbers are maintained in the long term at a higher 'set point' in the persistent infection. Similarly, these 'memory' T cells continue to divide at a much greater rate in the gammaHV-infected mice. New insights have also been generated on the nature of the recall response following secondary challenge in both experimental systems, and the extent of protection conferred by large numbers of virus-specific CD8+ T cells has been determined. However, there are still many parameters that have received little attention, partly because they are difficult to measure. These include the rate of antigen-specific CD8+ T-cell loss, the extent of the lymphocyte 'diaspora' to other tissues, and the diversity of functional characteristics, turnover rates, clonal life spans and recirculation profiles. The basic question for immunologists remains how we reconcile the extraordinary plasticity of the immune system with the mechanisms that maintain a stable milieu interieur. This new capacity to quantify CD8+ T-cell responses in readily manipulated mouse models has obvious potential for illuminating homeostatic control, particularly if the experimental approaches to the problem are designed in the context of appropriate predictive models.

Full Text

The Full Text of this article is available as a PDF (312.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996 Apr 5;272(5258):54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  2. Altman J. D., Moss P. A., Goulder P. J., Barouch D. H., McHeyzer-Williams M. G., Bell J. I., McMichael A. J., Davis M. M. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996 Oct 4;274(5284):94–96. doi: 10.1126/science.274.5284.94. [DOI] [PubMed] [Google Scholar]
  3. Bachmann M. F., Gallimore A., Linkert S., Cerundolo V., Lanzavecchia A., Kopf M., Viola A. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med. 1999 May 17;189(10):1521–1530. doi: 10.1084/jem.189.10.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belz G. T., Stevenson P. G., Castrucci M. R., Altman J. D., Doherty P. C. Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2725–2730. doi: 10.1073/pnas.040575197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belz G. T., Xie W., Altman J. D., Doherty P. C. A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. J Virol. 2000 Apr;74(8):3486–3493. doi: 10.1128/jvi.74.8.3486-3493.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergmann C. C., Altman J. D., Hinton D., Stohlman S. A. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J Immunol. 1999 Sep 15;163(6):3379–3387. [PubMed] [Google Scholar]
  7. Bieganowska K., Höllsberg P., Buckle G. J., Lim D. G., Greten T. F., Schneck J., Altman J. D., Jacobson S., Ledis S. L., Hanchard B. Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy. J Immunol. 1999 Feb 1;162(3):1765–1771. [PubMed] [Google Scholar]
  8. Borrow P., Tough D. F., Eto D., Tishon A., Grewal I. S., Sprent J., Flavell R. A., Oldstone M. B. CD40 ligand-mediated interactions are involved in the generation of memory CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol. 1998 Sep;72(9):7440–7449. doi: 10.1128/jvi.72.9.7440-7449.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  10. Busch D. H., Pilip I. M., Vijh S., Pamer E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity. 1998 Mar;8(3):353–362. doi: 10.1016/s1074-7613(00)80540-3. [DOI] [PubMed] [Google Scholar]
  11. Butz E. A., Bevan M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity. 1998 Feb;8(2):167–175. doi: 10.1016/s1074-7613(00)80469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Callan M. F., Tan L., Annels N., Ogg G. S., Wilson J. D., O'Callaghan C. A., Steven N., McMichael A. J., Rickinson A. B. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998 May 4;187(9):1395–1402. doi: 10.1084/jem.187.9.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cardin R. D., Brooks J. W., Sarawar S. R., Doherty P. C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996 Sep 1;184(3):863–871. doi: 10.1084/jem.184.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Christensen J. P., Cardin R. D., Branum K. C., Doherty P. C. CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5135–5140. doi: 10.1073/pnas.96.9.5135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Christensen J. P., Doherty P. C. Quantitative analysis of the acute and long-term CD4(+) T-cell response to a persistent gammaherpesvirus. J Virol. 1999 May;73(5):4279–4283. doi: 10.1128/jvi.73.5.4279-4283.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doherty P. C., Allan W., Eichelberger M., Carding S. R. Roles of alpha beta and gamma delta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10:123–151. doi: 10.1146/annurev.iy.10.040192.001011. [DOI] [PubMed] [Google Scholar]
  17. Doherty P. C. Anatomical environment as a determinant in viral immunity. J Immunol. 1995 Aug 1;155(3):1023–1027. [PubMed] [Google Scholar]
  18. Doherty P. C., Christensen J. P. Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol. 2000;18:561–592. doi: 10.1146/annurev.immunol.18.1.561. [DOI] [PubMed] [Google Scholar]
  19. Doherty P. C., Effros R. B., Bennink J. Heterogeneity of the cytotoxic response of thymus-derived lymphocytes after immunization with influenza viruses. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1209–1213. doi: 10.1073/pnas.74.3.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Doherty P. C., Hamilton-Easton A. M., Topham D. J., Riberdy J., Brooks J. W., Cardin R. D. Consequences of viral infections for lymphocyte compartmentalization and homeostasis. Semin Immunol. 1997 Dec;9(6):365–373. doi: 10.1006/smim.1997.0094. [DOI] [PubMed] [Google Scholar]
  21. Doherty P. C., Topham D. J., Tripp R. A., Cardin R. D., Brooks J. W., Stevenson P. G. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev. 1997 Oct;159:105–117. doi: 10.1111/j.1600-065x.1997.tb01010.x. [DOI] [PubMed] [Google Scholar]
  22. Doherty P. C., Topham D. J., Tripp R. A. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev. 1996 Apr;150:23–44. doi: 10.1111/j.1600-065x.1996.tb00694.x. [DOI] [PubMed] [Google Scholar]
  23. Dutton R. W., Swain S. L., Bradley L. M. The generation and maintenance of memory T and B cells. Immunol Today. 1999 Jul;20(7):291–293. doi: 10.1016/s0167-5699(98)01415-7. [DOI] [PubMed] [Google Scholar]
  24. Efstathiou S., Ho Y. M., Hall S., Styles C. J., Scott S. D., Gompels U. A. Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol. 1990 Jun;71(Pt 6):1365–1372. doi: 10.1099/0022-1317-71-6-1365. [DOI] [PubMed] [Google Scholar]
  25. Eichelberger M., Allan W., Zijlstra M., Jaenisch R., Doherty P. C. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med. 1991 Oct 1;174(4):875–880. doi: 10.1084/jem.174.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Flynn K. J., Belz G. T., Altman J. D., Ahmed R., Woodland D. L., Doherty P. C. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity. 1998 Jun;8(6):683–691. doi: 10.1016/s1074-7613(00)80573-7. [DOI] [PubMed] [Google Scholar]
  27. Flynn K. J., Riberdy J. M., Christensen J. P., Altman J. D., Doherty P. C. In vivo proliferation of naïve and memory influenza-specific CD8(+) T cells. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8597–8602. doi: 10.1073/pnas.96.15.8597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Freitas A. A., Rocha B. B. Lymphocyte lifespans: homeostasis, selection and competition. Immunol Today. 1993 Jan;14(1):25–29. doi: 10.1016/0167-5699(93)90320-K. [DOI] [PubMed] [Google Scholar]
  29. Hou S., Hyland L., Bradley L. M., Watson S. R., Doherty P. C. Subverting lymph node trafficking by treatment with the Mel-14 monoclonal antibody to L-selectin does not prevent an effective host response to Sendai virus. J Immunol. 1995 Jul 1;155(1):252–258. [PubMed] [Google Scholar]
  30. Hou S., Hyland L., Ryan K. W., Portner A., Doherty P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994 Jun 23;369(6482):652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
  31. Hyland L., Sangster M., Sealy R., Coleclough C. Respiratory virus infection of mice provokes a permanent humoral immune response. J Virol. 1994 Sep;68(9):6083–6086. doi: 10.1128/jvi.68.9.6083-6086.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kilbourne E. D. Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ. 1969;41(3):643–645. [PMC free article] [PubMed] [Google Scholar]
  33. Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991 Apr 4;350(6317):423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
  34. Liu L., Usherwood E. J., Blackman M. A., Woodland D. L. T-cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice. J Virol. 1999 Dec;73(12):9849–9857. doi: 10.1128/jvi.73.12.9849-9857.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lynch F., Doherty P. C., Ceredig R. Phenotypic and functional analysis of the cellular response in regional lymphoid tissue during an acute virus infection. J Immunol. 1989 May 15;142(10):3592–3598. [PubMed] [Google Scholar]
  36. Marrack P., Hugo P., McCormack J., Kappler J. Death and T cells. Immunol Rev. 1993 Jun;133:119–129. doi: 10.1111/j.1600-065x.1993.tb01513.x. [DOI] [PubMed] [Google Scholar]
  37. McWilliam A. S., Marsh A. M., Holt P. G. Inflammatory infiltration of the upper airway epithelium during Sendai virus infection: involvement of epithelial dendritic cells. J Virol. 1997 Jan;71(1):226–236. doi: 10.1128/jvi.71.1.226-236.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mozdzanowska K., Furchner M., Maiese K., Gerhard W. CD4+ T cells are ineffective in clearing a pulmonary infection with influenza type A virus in the absence of B cells. Virology. 1997 Dec 8;239(1):217–225. doi: 10.1006/viro.1997.8882. [DOI] [PubMed] [Google Scholar]
  39. Murali-Krishna K., Altman J. D., Suresh M., Sourdive D. J., Zajac A. J., Miller J. D., Slansky J., Ahmed R. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity. 1998 Feb;8(2):177–187. doi: 10.1016/s1074-7613(00)80470-7. [DOI] [PubMed] [Google Scholar]
  40. Murali-Krishna K., Lau L. L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999 Nov 12;286(5443):1377–1381. doi: 10.1126/science.286.5443.1377. [DOI] [PubMed] [Google Scholar]
  41. Nash A. A., Sunil-Chandra N. P. Interactions of the murine gammaherpesvirus with the immune system. Curr Opin Immunol. 1994 Aug;6(4):560–563. doi: 10.1016/0952-7915(94)90141-4. [DOI] [PubMed] [Google Scholar]
  42. Picker L. J. Control of lymphocyte homing. Curr Opin Immunol. 1994 Jun;6(3):394–406. doi: 10.1016/0952-7915(94)90118-x. [DOI] [PubMed] [Google Scholar]
  43. Riberdy J. M., Flynn K. J., Stech J., Webster R. G., Altman J. D., Doherty P. C. Protection against a lethal avian influenza A virus in a mammalian system. J Virol. 1999 Feb;73(2):1453–1459. doi: 10.1128/jvi.73.2.1453-1459.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sangster M. Y., Topham D. J., D'Costa S., Cardin R. D., Marion T. N., Myers L. K., Doherty P. C. Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol. 2000 Feb 15;164(4):1820–1828. doi: 10.4049/jimmunol.164.4.1820. [DOI] [PubMed] [Google Scholar]
  45. Slifka M. K., Matloubian M., Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995 Mar;69(3):1895–1902. doi: 10.1128/jvi.69.3.1895-1902.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sprent J. Immunological memory. Curr Opin Immunol. 1997 Jun;9(3):371–379. doi: 10.1016/s0952-7915(97)80084-2. [DOI] [PubMed] [Google Scholar]
  47. Sprent J., Zhang X., Sun S., Tough D. T-cell turnover in vivo and the role of cytokines. Immunol Lett. 1999 Jan;65(1-2):21–25. doi: 10.1016/s0165-2478(98)00119-9. [DOI] [PubMed] [Google Scholar]
  48. Stevenson P. G., Belz G. T., Altman J. D., Doherty P. C. Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol. 1999 Apr;29(4):1059–1067. doi: 10.1002/(SICI)1521-4141(199904)29:04<1059::AID-IMMU1059>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  49. Stevenson P. G., Belz G. T., Castrucci M. R., Altman J. D., Doherty P. C. A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9281–9286. doi: 10.1073/pnas.96.16.9281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Swain S. L., Hu H., Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science. 1999 Nov 12;286(5443):1381–1383. doi: 10.1126/science.286.5443.1381. [DOI] [PubMed] [Google Scholar]
  51. Tanchot C., Lemonnier F. A., Pérarnau B., Freitas A. A., Rocha B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science. 1997 Jun 27;276(5321):2057–2062. doi: 10.1126/science.276.5321.2057. [DOI] [PubMed] [Google Scholar]
  52. Topham D. J., Doherty P. C. Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J Virol. 1998 Jan;72(1):882–885. doi: 10.1128/jvi.72.1.882-885.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Topham D. J., Doherty P. C. Longitudinal analysis of the acute Sendai virus-specific CD4+ T cell response and memory. J Immunol. 1998 Nov 1;161(9):4530–4535. [PubMed] [Google Scholar]
  54. Topham D. J., Tripp R. A., Doherty P. C. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997 Dec 1;159(11):5197–5200. [PubMed] [Google Scholar]
  55. Topham D. J., Tripp R. A., Hamilton-Easton A. M., Sarawar S. R., Doherty P. C. Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J Immunol. 1996 Oct 1;157(7):2947–2952. [PubMed] [Google Scholar]
  56. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  57. Tripp R. A., Hamilton-Easton A. M., Cardin R. D., Nguyen P., Behm F. G., Woodland D. L., Doherty P. C., Blackman M. A. Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J Exp Med. 1997 May 5;185(9):1641–1650. doi: 10.1084/jem.185.9.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Usherwood E. J., Hogg T. L., Woodland D. L. Enumeration of antigen-presenting cells in mice infected with Sendai virus. J Immunol. 1999 Mar 15;162(6):3350–3355. [PubMed] [Google Scholar]
  59. Virgin H. W., 4th, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol. 1997 Aug;71(8):5894–5904. doi: 10.1128/jvi.71.8.5894-5904.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Virgin H. W., Speck S. H. Unraveling immunity to gamma-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol. 1999 Aug;11(4):371–379. doi: 10.1016/s0952-7915(99)80063-6. [DOI] [PubMed] [Google Scholar]
  61. Wack A., Corbella P., Harker N., Crispe I. N., Kioussis D. Multiple sites of post-activation CD8+ T cell disposal. Eur J Immunol. 1997 Mar;27(3):577–583. doi: 10.1002/eji.1830270302. [DOI] [PubMed] [Google Scholar]
  62. Webster R. G. Influenza virus: transmission between species and relevance to emergence of the next human pandemic. Arch Virol Suppl. 1997;13:105–113. doi: 10.1007/978-3-7091-6534-8_11. [DOI] [PubMed] [Google Scholar]
  63. Wodarz D., Nowak M. A., Bangham C. R. The dynamics of HTLV-I and the CTL response. Immunol Today. 1999 May;20(5):220–227. doi: 10.1016/s0167-5699(99)01446-2. [DOI] [PubMed] [Google Scholar]
  64. Yewdell J. W., Bennink J. R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88. doi: 10.1146/annurev.immunol.17.1.51. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES