Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Aug 29;355(1400):1021–1029. doi: 10.1098/rstb.2000.0639

Transient antiretroviral treatment during acute simian immunodeficiency virus infection facilitates long-term control of the virus.

D Wodarz 1, R A Arnaout 1, M A Nowak 1, J D Lifson 1
PMCID: PMC1692816  PMID: 11186303

Abstract

Experimental evidence and mathematical models indicate that CD4+ T-cell help is required to generate memory cytotoxicT-lymphocyte precursors (CTLp) that are capable of persisting without ongoing antigenic stimulation, and that such responses are necessary to clear an infection or to control it in the long term. Here we analyse mathematical models of simian immunodeficiency virus (SIV) replication in macaques, assuming that SIV impairs specific CD4+ T-cell responses. According to the models, fast viral replication during the initial stages of primary infection can result in failure to generate sufficient long-lived memory CTLp required to control the infection in the long term. Modelling of drug therapy during the acute phase of the infection indicates that transient treatment can minimize the amount of virus-induced immune impairment, allowing a more effective initial immune sensitization. The result is the development of high levels of memory CTLp that are capable of controlling SIV replication in the long term, in the absence of continuous treament. In the model, the success of treatment depends crucially on the timing and duration of antiretroviral therapy. Data on SIV-infected macaques receiving transient drug therapy during acute infection support these theoretical predictions. The data and modelling suggest that among subjects controlling SIV replication most efficiently after treatment, there is a positive correlation between cellular immune responses and virus load in the post-acute stage of infection. Among subjects showing less-efficient virus control, the correlation is negative. We discuss our findings in relation to previously published data on HIV infection.

Full Text

The Full Text of this article is available as a PDF (315.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borrow P., Tishon A., Lee S., Xu J., Grewal I. S., Oldstone M. B., Flavell R. A. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med. 1996 May 1;183(5):2129–2142. doi: 10.1084/jem.183.5.2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borrow P., Tough D. F., Eto D., Tishon A., Grewal I. S., Sprent J., Flavell R. A., Oldstone M. B. CD40 ligand-mediated interactions are involved in the generation of memory CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol. 1998 Sep;72(9):7440–7449. doi: 10.1128/jvi.72.9.7440-7449.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jin X., Bauer D. E., Tuttleton S. E., Lewin S., Gettie A., Blanchard J., Irwin C. E., Safrit J. T., Mittler J., Weinberger L. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999 Mar 15;189(6):991–998. doi: 10.1084/jem.189.6.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kalams S. A., Goulder P. J., Shea A. K., Jones N. G., Trocha A. K., Ogg G. S., Walker B. D. Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J Virol. 1999 Aug;73(8):6721–6728. doi: 10.1128/jvi.73.8.6721-6728.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lifson J. D., Nowak M. A., Goldstein S., Rossio J. L., Kinter A., Vasquez G., Wiltrout T. A., Brown C., Schneider D., Wahl L. The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. J Virol. 1997 Dec;71(12):9508–9514. doi: 10.1128/jvi.71.12.9508-9514.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lifson J. D., Rossio J. L., Arnaout R., Li L., Parks T. L., Schneider D. K., Kiser R. F., Coalter V. J., Walsh G., Imming R. J. Containment of simian immunodeficiency virus infection: cellular immune responses and protection from rechallenge following transient postinoculation antiretroviral treatment. J Virol. 2000 Mar;74(6):2584–2593. doi: 10.1128/jvi.74.6.2584-2593.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nowak M. A., Bangham C. R. Population dynamics of immune responses to persistent viruses. Science. 1996 Apr 5;272(5258):74–79. doi: 10.1126/science.272.5258.74. [DOI] [PubMed] [Google Scholar]
  8. Ogg G. S., Jin X., Bonhoeffer S., Dunbar P. R., Nowak M. A., Monard S., Segal J. P., Cao Y., Rowland-Jones S. L., Cerundolo V. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science. 1998 Mar 27;279(5359):2103–2106. doi: 10.1126/science.279.5359.2103. [DOI] [PubMed] [Google Scholar]
  9. Planz O., Ehl S., Furrer E., Horvath E., Bründler M. A., Hengartner H., Zinkernagel R. M. A critical role for neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6874–6879. doi: 10.1073/pnas.94.13.6874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rosenberg E. S., Billingsley J. M., Caliendo A. M., Boswell S. L., Sax P. E., Kalams S. A., Walker B. D. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997 Nov 21;278(5342):1447–1450. doi: 10.1126/science.278.5342.1447. [DOI] [PubMed] [Google Scholar]
  11. Rosenberg E. S., LaRosa L., Flynn T., Robbins G., Walker B. D. Characterization of HIV-1-specific T-helper cells in acute and chronic infection. Immunol Lett. 1999 Mar;66(1-3):89–93. doi: 10.1016/s0165-2478(98)00165-5. [DOI] [PubMed] [Google Scholar]
  12. Saah A. J., Hoover D. R., Weng S., Carrington M., Mellors J., Rinaldo C. R., Jr, Mann D., Apple R., Phair J. P., Detels R. Association of HLA profiles with early plasma viral load, CD4+ cell count and rate of progression to AIDS following acute HIV-1 infection. Multicenter AIDS Cohort Study. AIDS. 1998 Nov 12;12(16):2107–2113. doi: 10.1097/00002030-199816000-00005. [DOI] [PubMed] [Google Scholar]
  13. Schmitz J. E., Kuroda M. J., Santra S., Sasseville V. G., Simon M. A., Lifton M. A., Racz P., Tenner-Racz K., Dalesandro M., Scallon B. J. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999 Feb 5;283(5403):857–860. doi: 10.1126/science.283.5403.857. [DOI] [PubMed] [Google Scholar]
  14. Thomsen A. R., Johansen J., Marker O., Christensen J. P. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol. 1996 Oct 1;157(7):3074–3080. [PubMed] [Google Scholar]
  15. Thomsen A. R., Nansen A., Christensen J. P., Andreasen S. O., Marker O. CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol. 1998 Nov 1;161(9):4583–4590. [PubMed] [Google Scholar]
  16. Wodarz D., May R. M., Nowak M. A. The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int Immunol. 2000 Apr;12(4):467–477. doi: 10.1093/intimm/12.4.467. [DOI] [PubMed] [Google Scholar]
  17. Wodarz D., Page K. M., Arnaout R. A., Thomsen A. R., Lifson J. D., Nowak M. A. A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment. Philos Trans R Soc Lond B Biol Sci. 2000 Mar 29;355(1395):329–343. doi: 10.1098/rstb.2000.0570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zajac A. J., Blattman J. N., Murali-Krishna K., Sourdive D. J., Suresh M., Altman J. D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998 Dec 21;188(12):2205–2213. doi: 10.1084/jem.188.12.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES