Abstract
When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content and induction of antioxidant defences. The induction of extra-plastidial antioxidant systems is important in the protection of the chloroplast under EL conditions. A larger range of transcripts encoding different antioxidant defence enzymes may be induced in the systemically acclimated leaves and these include those encoded by the glutathione peroxidase (GPX2) and glutathione-S-transferase (GST) genes, which are also highly induced in the hypersensitive response and associated systemic acquired resistance (SAR) in incompatible plant-pathogen interactions. Furthermore, the expression of the SAR-inducible pathogenesis-related protein gene, PR2, is enhanced in SAA leaves. Wounded leaf tissue also shows enhanced systemic induction of a cytosolic ascorbate peroxidase gene (APX2) under EL conditions. These and other considerations, suggest H2O2 and other reactive oxygen species (ROS) could be the common factor in signalling pathways for diverse environmental stresses. These effects may be mediated by changes in the level and redox state of the cellular glutathione pool. Mutants with constitutive expression of a normally EL-inducible APX2 gene have much reduced levels of foliar glutathione. The expression of APX1 and APX3, encoding cytosolic and peroxisome-associated isoforms, respectively, are also under phytochrome-A-mediated control. The expression of these genes is tightly linked to the greening of plastids in etiolated seedlings. These data suggest that part of the developmental processes that bring about the acclimation of leaves to high light includes the configuration of antioxidant defences. Therefore, the linkage between immediate responses of leaves to EL, acclimation of chloroplasts to EEE and the subsequent changes to leaf form and function in high light could be mediated by the activity of foliar antioxidant defences and changes in the concentration of ROS.
Full Text
The Full Text of this article is available as a PDF (364.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez M. E., Pennell R. I., Meijer P. J., Ishikawa A., Dixon R. A., Lamb C. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell. 1998 Mar 20;92(6):773–784. doi: 10.1016/s0092-8674(00)81405-1. [DOI] [PubMed] [Google Scholar]
- Asada Kozi. THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):601–639. doi: 10.1146/annurev.arplant.50.1.601. [DOI] [PubMed] [Google Scholar]
- Aslund F., Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell. 1999 Mar 19;96(6):751–753. doi: 10.1016/s0092-8674(00)80584-x. [DOI] [PubMed] [Google Scholar]
- Beeor-Tzahar T., Ben-Hayyim G., Holland D., Faltin Z., Eshdat Y. A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 1995 Jun 12;366(2-3):151–155. doi: 10.1016/0014-5793(95)00521-a. [DOI] [PubMed] [Google Scholar]
- Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
- Bowler C., Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 2000 Jun;5(6):241–246. doi: 10.1016/s1360-1385(00)01628-9. [DOI] [PubMed] [Google Scholar]
- Cao H., Glazebrook J., Clarke J. D., Volko S., Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997 Jan 10;88(1):57–63. doi: 10.1016/s0092-8674(00)81858-9. [DOI] [PubMed] [Google Scholar]
- Cobbett C. S., May M. J., Howden R., Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J. 1998 Oct;16(1):73–78. doi: 10.1046/j.1365-313x.1998.00262.x. [DOI] [PubMed] [Google Scholar]
- Conklin P. L., Pallanca J. E., Last R. L., Smirnoff N. L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1. Plant Physiol. 1997 Nov;115(3):1277–1285. doi: 10.1104/pp.115.3.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress . Plant Cell. 1999 Jul;11(7):1277–1292. doi: 10.1105/tpc.11.7.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delledonne M., Xia Y., Dixon R. A., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998 Aug 6;394(6693):585–588. doi: 10.1038/29087. [DOI] [PubMed] [Google Scholar]
- Fodor J., Gullner G., Adam A. L., Barna B., Komives T., Kiraly Z. Local and Systemic Responses of Antioxidants to Tobacco Mosaic Virus Infection and to Salicylic Acid in Tobacco (Role in Systemic Acquired Resistance). Plant Physiol. 1997 Aug;114(4):1443–1451. doi: 10.1104/pp.114.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
- Horton P., Ruban A. V., Walters R. G. REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):655–684. doi: 10.1146/annurev.arplant.47.1.655. [DOI] [PubMed] [Google Scholar]
- Howden R., Andersen C. R., Goldsbrough P. B., Cobbett C. S. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 1995 Apr;107(4):1067–1073. doi: 10.1104/pp.107.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huala E., Oeller P. W., Liscum E., Han I. S., Larsen E., Briggs W. R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science. 1997 Dec 19;278(5346):2120–2123. doi: 10.1126/science.278.5346.2120. [DOI] [PubMed] [Google Scholar]
- Jespersen H. M., Kjaersgård I. V., Ostergaard L., Welinder K. G. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J. 1997 Sep 1;326(Pt 2):305–310. doi: 10.1042/bj3260305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan T. R., Thomas S. M., Scott-Brown K. C. The illusory-letters phenomenon: an illustration of graphemic restoration in visual word recognition. Perception. 1999;28(11):1413–1416. doi: 10.1068/p2919. [DOI] [PubMed] [Google Scholar]
- Jäger-Vottero P., Dorne A. J., Jordanov J., Douce R., Joyard J. Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1597–1602. doi: 10.1073/pnas.94.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpinski S., Escobar C., Karpinska B., Creissen G., Mullineaux P. M. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell. 1997 Apr;9(4):627–640. doi: 10.1105/tpc.9.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creissen G., Mullineaux P. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science. 1999 Apr 23;284(5414):654–657. doi: 10.1126/science.284.5414.654. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Henmi K., Ono E., Hatakeyama S., Iwano M., Satoh H., Shimamoto K. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10922–10926. doi: 10.1073/pnas.96.19.10922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovtun Y., Chiu W. L., Tena G., Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940–2945. doi: 10.1073/pnas.97.6.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubo A., Saji H., Tanaka K., Kondo N. Genomic DNA structure of a gene encoding cytosolic ascorbate peroxidase from Arabidopsis thaliana. FEBS Lett. 1993 Jan 11;315(3):313–317. doi: 10.1016/0014-5793(93)81185-3. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Li X. P., Björkman O., Shih C., Grossman A. R., Rosenquist M., Jansson S., Niyogi K. K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000 Jan 27;403(6768):391–395. doi: 10.1038/35000131. [DOI] [PubMed] [Google Scholar]
- Maleck K, Dietrich RA. Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci. 1999 Jun;4(6):215–219. doi: 10.1016/s1360-1385(99)01415-6. [DOI] [PubMed] [Google Scholar]
- Mayer R., Raventos D., Chua N. H. det1, cop1, and cop9 mutations cause inappropriate expression of several gene sets. Plant Cell. 1996 Nov;8(11):1951–1959. doi: 10.1105/tpc.8.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer M., Schreck R., Baeuerle P. A. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993 May;12(5):2005–2015. doi: 10.1002/j.1460-2075.1993.tb05850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Herr E. H., Orvar B. L., van Camp W., Willekens H., Inzé D., Ellis B. E. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14165–14170. doi: 10.1073/pnas.96.24.14165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullineaux P. M., Karpinski S., Jiménez A., Cleary S. P., Robinson C., Creissen G. P. Identification of cDNAS encoding plastid-targeted glutathione peroxidase. Plant J. 1998 Feb;13(3):375–379. doi: 10.1046/j.1365-313x.1998.00052.x. [DOI] [PubMed] [Google Scholar]
- Nagy F., Schäfer E. Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J. 2000 Jan 17;19(2):157–163. doi: 10.1093/emboj/19.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noctor G, Arisi AC, Jouanin L, Foyer CH. Manipulation of glutathione and amino acid biosynthesis in the chloroplast . Plant Physiol. 1998 Oct;118(2):471–482. doi: 10.1104/pp.118.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noctor Graham, Foyer Christine H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):249–279. doi: 10.1146/annurev.arplant.49.1.249. [DOI] [PubMed] [Google Scholar]
- Orozco-Cardenas M., Ryan C. A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6553–6557. doi: 10.1073/pnas.96.11.6553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennell R. I., Lamb C. Programmed Cell Death in Plants. Plant Cell. 1997 Jul;9(7):1157–1168. doi: 10.1105/tpc.9.7.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Havir E. A. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta. 2000 Jan;210(2):205–214. doi: 10.1007/PL00008127. [DOI] [PubMed] [Google Scholar]
- Rao M. V., Davis K. R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J. 1999 Mar;17(6):603–614. doi: 10.1046/j.1365-313x.1999.00400.x. [DOI] [PubMed] [Google Scholar]
- Rojo E, León J, Sánchez-Serrano JJ. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 1999 Oct;20(2):135–142. doi: 10.1046/j.1365-313x.1999.00570.x. [DOI] [PubMed] [Google Scholar]
- Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H., Jones J. D. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell. 1999 Feb;11(2):273–287. doi: 10.1105/tpc.11.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell A. W., Critchley C., Robinson S. A., Franklin L. A., Seaton GGR., Chow W. S., Anderson J. M., Osmond C. B. Photosystem II Regulation and Dynamics of the Chloroplast D1 Protein in Arabidopsis Leaves during Photosynthesis and Photoinhibition. Plant Physiol. 1995 Mar;107(3):943–952. doi: 10.1104/pp.107.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos M., Gousseau H., Lister C., Foyer C., Creissen G., Mullineaux P. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta. 1996;198(1):64–69. doi: 10.1007/BF00197587. [DOI] [PubMed] [Google Scholar]
- Tlalka M, Fricker M. The role of calcium in blue-light-dependent chloroplast movement in lemna trisulca L. Plant J. 1999 Nov;20(4):461–473. doi: 10.1046/j.1365-313x.1999.00621.x. [DOI] [PubMed] [Google Scholar]
- Tlalka M, Runquist M, Fricker M. Light perception and the role of the xanthophyll cycle in blue-light-dependent chloroplast movements in lemna trisulca L. Plant J. 1999 Nov;20(4):447–459. doi: 10.1046/j.1365-313x.1999.00614.x. [DOI] [PubMed] [Google Scholar]
- Walters R. G., Rogers J. J., Shephard F., Horton P. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta. 1999 Oct;209(4):517–527. doi: 10.1007/s004250050756. [DOI] [PubMed] [Google Scholar]
- Weichert H., Stenzel I., Berndt E., Wasternack C., Feussner I. Metabolic profiling of oxylipins upon salicylate treatment in barley leaves--preferential induction of the reductase pathway by salicylate(1). FEBS Lett. 1999 Dec 31;464(3):133–137. doi: 10.1016/s0014-5793(99)01697-x. [DOI] [PubMed] [Google Scholar]
- Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997 Aug 15;16(16):4806–4816. doi: 10.1093/emboj/16.16.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]