Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Oct 29;355(1402):1395–1403. doi: 10.1098/rstb.2000.0701

Genetic manipulation of carotenoid biosynthesis and photoprotection.

B J Pogson 1, H M Rissler 1
PMCID: PMC1692877  PMID: 11127994

Abstract

There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.

Full Text

The Full Text of this article is available as a PDF (324.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassi R., Croce R., Cugini D., Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10056–10061. doi: 10.1073/pnas.96.18.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  3. Bonk M., Hoffmann B., Von Lintig J., Schledz M., Al-Babili S., Hobeika E., Kleinig H., Beyer P. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem. 1997 Aug 1;247(3):942–950. doi: 10.1111/j.1432-1033.1997.00942.x. [DOI] [PubMed] [Google Scholar]
  4. Bouvier F., Hugueney P., d'Harlingue A., Kuntz M., Camara B. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J. 1994 Jul;6(1):45–54. doi: 10.1046/j.1365-313x.1994.6010045.x. [DOI] [PubMed] [Google Scholar]
  5. Bouvier F., d'Harlingue A., Hugueney P., Marin E., Marion-Poll A., Camara B. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem. 1996 Nov 15;271(46):28861–28867. doi: 10.1074/jbc.271.46.28861. [DOI] [PubMed] [Google Scholar]
  6. Bungard R. A., Ruban A. V., Hibberd J. M., Press M. C., Horton P., Scholes J. D. Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1135–1139. doi: 10.1073/pnas.96.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  8. Cunningham F. X., Gantt E. GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):557–583. doi: 10.1146/annurev.arplant.49.1.557. [DOI] [PubMed] [Google Scholar]
  9. Cunningham F. X., Jr, Pogson B., Sun Z., McDonald K. A., DellaPenna D., Gantt E. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell. 1996 Sep;8(9):1613–1626. doi: 10.1105/tpc.8.9.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreyfuss B. W., Thornber J. P. Organization of the Light-Harvesting Complex of Photosystem I and Its Assembly during Plastid Development. Plant Physiol. 1994 Nov;106(3):841–848. doi: 10.1104/pp.106.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frank H. A., Bautista J. A., Josue J. S., Young A. J. Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry. 2000 Mar 21;39(11):2831–2837. doi: 10.1021/bi9924664. [DOI] [PubMed] [Google Scholar]
  12. Gilmore A. M., Shinkarev V. P., Hazlett T. L., Govindjee G. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry. 1998 Sep 29;37(39):13582–13593. doi: 10.1021/bi981384x. [DOI] [PubMed] [Google Scholar]
  13. Gilmore A. M., Yamamoto H. Y. Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport. Plant Physiol. 1991 Jun;96(2):635–643. doi: 10.1104/pp.96.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giuffra E., Cugini D., Croce R., Bassi R. Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem. 1996 May 15;238(1):112–120. doi: 10.1111/j.1432-1033.1996.0112q.x. [DOI] [PubMed] [Google Scholar]
  15. Gleave A. P. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol. 1992 Dec;20(6):1203–1207. doi: 10.1007/BF00028910. [DOI] [PubMed] [Google Scholar]
  16. Gruszecki WI, Grudzinski W, Banaszek-Glos A, Matula M, Kernen P, Krupa Z, Sielewiesiuk J. Xanthophyll pigments in light-harvesting complex II in monomolecular layers: localisation, energy transfer and orientation . Biochim Biophys Acta. 1999 Jun 30;1412(2):173–183. doi: 10.1016/s0005-2728(99)00055-9. [DOI] [PubMed] [Google Scholar]
  17. Hanley J., Deligiannakis Y., Pascal A., Faller P., Rutherford A. W. Carotenoid oxidation in photosystem II. Biochemistry. 1999 Jun 29;38(26):8189–8195. doi: 10.1021/bi990633u. [DOI] [PubMed] [Google Scholar]
  18. Havaux M., Niyogi K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762–8767. doi: 10.1073/pnas.96.15.8762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horton P., Ruban A. V., Walters R. G. REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):655–684. doi: 10.1146/annurev.arplant.47.1.655. [DOI] [PubMed] [Google Scholar]
  20. Hurry V., Anderson J. M., Chow W. S., Osmond C. B. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo. Plant Physiol. 1997 Feb;113(2):639–648. doi: 10.1104/pp.113.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  22. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  23. Li X. P., Björkman O., Shih C., Grossman A. R., Rosenquist M., Jansson S., Niyogi K. K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000 Jan 27;403(6768):391–395. doi: 10.1038/35000131. [DOI] [PubMed] [Google Scholar]
  24. Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996 May 15;15(10):2331–2342. [PMC free article] [PubMed] [Google Scholar]
  25. Niyogi K. K., Björkman O., Grossman A. R. The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14162–14167. doi: 10.1073/pnas.94.25.14162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Niyogi K. K., Grossman A. R., Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 1998 Jul;10(7):1121–1134. doi: 10.1105/tpc.10.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Niyogi Krishna K. PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):333–359. doi: 10.1146/annurev.arplant.50.1.333. [DOI] [PubMed] [Google Scholar]
  28. Plumley F. G., Schmidt G. W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):146–150. doi: 10.1073/pnas.84.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pogson B. J., Niyogi K. K., Björkman O., DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13324–13329. doi: 10.1073/pnas.95.22.13324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pogson B., McDonald K. A., Truong M., Britton G., DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996 Sep;8(9):1627–1639. doi: 10.1105/tpc.8.9.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rock C. D., Zeevaart J. A. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7496–7499. doi: 10.1073/pnas.88.17.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ros F., Bassi R., Paulsen H. Pigment-binding properties of the recombinant photosystem II subunit CP26 reconstituted in vitro. Eur J Biochem. 1998 May 1;253(3):653–658. doi: 10.1046/j.1432-1327.1998.2530653.x. [DOI] [PubMed] [Google Scholar]
  33. Sandmann G. Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem. 1994 Jul 1;223(1):7–24. doi: 10.1111/j.1432-1033.1994.tb18961.x. [DOI] [PubMed] [Google Scholar]
  34. Tardy F., Havaux M. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J Photochem Photobiol B. 1996 Jun;34(1):87–94. doi: 10.1016/1011-1344(95)07272-1. [DOI] [PubMed] [Google Scholar]
  35. YAMAMOTO H. Y., NAKAYAMA T. O., CHICHESTER C. O. Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys. 1962 Apr;97:168–173. doi: 10.1016/0003-9861(62)90060-7. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES