Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Feb 28;357(1418):229–234. doi: 10.1098/rstb.2001.1031

Comparative structures and properties of elastic proteins.

Arthur S Tatham 1, Peter R Shewry 1
PMCID: PMC1692927  PMID: 11911780

Abstract

Elastic proteins are characterized by being able to undergo significant deformation, without rupture, before returning to their original state when the stress is removed. The sequences of elastic proteins contain elastomeric domains, which comprise repeated sequences, which in many cases appear to form beta-turns. In addition, the majority also contain domains that form intermolecular cross-links, which may be covalent or non-covalent. The mechanism of elasticity varies between the different proteins and appears to be related to the biological role of the protein.

Full Text

The Full Text of this article is available as a PDF (112.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardell D. H., Andersen S. O. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol. 2001 Sep;31(10):965–970. doi: 10.1016/s0965-1748(01)00044-3. [DOI] [PubMed] [Google Scholar]
  2. Bell E, Gosline J. Mechanical design of mussel byssus: material yield enhances attachment strength. J Exp Biol. 1996;199(Pt 4):1005–1017. doi: 10.1242/jeb.199.4.1005. [DOI] [PubMed] [Google Scholar]
  3. Cao Q., Wang Y., Bayley H. Sequence of abductin, the molluscan 'rubber' protein. Curr Biol. 1997 Nov 1;7(11):R677–R678. doi: 10.1016/s0960-9822(06)00353-8. [DOI] [PubMed] [Google Scholar]
  4. Deming T. J. Mussel byssus and biomolecular materials. Curr Opin Chem Biol. 1999 Feb;3(1):100–105. doi: 10.1016/s1367-5931(99)80018-0. [DOI] [PubMed] [Google Scholar]
  5. Ellis G. E., Packer K. J. Nuclear spin-relaxation studies of hydrated elastin. Biopolymers. 1976 May;15(5):813–832. doi: 10.1002/bip.1976.360150502. [DOI] [PubMed] [Google Scholar]
  6. Field J. M., Tatham A. S., Shewry P. R. The structure of a high-Mr subunit of durum-wheat (Triticum durum) gluten. Biochem J. 1987 Oct 1;247(1):215–221. doi: 10.1042/bj2470215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster J. A., Bruenger E., Rubin L., Imberman M., Kagan H., Mecham R., Franzblau C. Circular dichroism studies of an elastin crosslinked peptide. Biopolymers. 1976 May;15(5):833–841. doi: 10.1002/bip.1976.360150503. [DOI] [PubMed] [Google Scholar]
  8. Gilbert S. M., Wellner N., Belton P. S., Greenfield J. A., Siligardi G., Shewry P. R., Tatham A. S. Expression and characterisation of a highly repetitive peptide derived from a wheat seed storage protein. Biochim Biophys Acta. 2000 Jun 15;1479(1-2):135–146. doi: 10.1016/s0167-4838(00)00059-5. [DOI] [PubMed] [Google Scholar]
  9. Gosline J. M. Hydrophobic interaction and a model for the elasticity of elastin. Biopolymers. 1978 Mar;17(3):677–695. doi: 10.1002/bip.1978.360170311. [DOI] [PubMed] [Google Scholar]
  10. Greaser M. Identification of new repeating motifs in titin. Proteins. 2001 May 1;43(2):145–149. doi: 10.1002/1097-0134(20010501)43:2<145::aid-prot1026>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  11. Guerette P. A., Ginzinger D. G., Weber B. H., Gosline J. M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science. 1996 Apr 5;272(5258):112–115. doi: 10.1126/science.272.5258.112. [DOI] [PubMed] [Google Scholar]
  12. Hayashi C. Y., Lewis R. V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol. 1998 Feb 6;275(5):773–784. doi: 10.1006/jmbi.1997.1478. [DOI] [PubMed] [Google Scholar]
  13. Hayashi C. Y., Lewis R. V. Molecular architecture and evolution of a modular spider silk protein gene. Science. 2000 Feb 25;287(5457):1477–1479. doi: 10.1126/science.287.5457.1477. [DOI] [PubMed] [Google Scholar]
  14. Hayashi C. Y., Shipley N. H., Lewis R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):271–275. doi: 10.1016/s0141-8130(98)00089-0. [DOI] [PubMed] [Google Scholar]
  15. Hijirida D. H., Do K. G., Michal C., Wong S., Zax D., Jelinski L. W. 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J. 1996 Dec;71(6):3442–3447. doi: 10.1016/S0006-3495(96)79539-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoeve C. A., Flory P. J. The elastic properties of elastin. Biopolymers. 1974 Apr;13(4):677–686. doi: 10.1002/bip.1974.360130404. [DOI] [PubMed] [Google Scholar]
  17. Indik Z., Yeh H., Ornstein-Goldstein N., Sheppard P., Anderson N., Rosenbloom J. C., Peltonen L., Rosenbloom J. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5680–5684. doi: 10.1073/pnas.84.16.5680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kikuchi Y., Tamiya N. Methionine sulfoxide in the resilium protein of surf clams. J Biochem. 1981 Jun;89(6):1975–1976. doi: 10.1093/oxfordjournals.jbchem.a133399. [DOI] [PubMed] [Google Scholar]
  19. Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995 Oct 13;270(5234):293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  20. Linke W. A., Ivemeyer M., Mundel P., Stockmeier M. R., Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052–8057. doi: 10.1073/pnas.95.14.8052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linke W. A., Rudy D. E., Centner T., Gautel M., Witt C., Labeit S., Gregorio C. C. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol. 1999 Aug 9;146(3):631–644. doi: 10.1083/jcb.146.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miles M. J., Carr H. J., McMaster T. C., I'Anson K. J., Belton P. S., Morris V. J., Field J. M., Shewry P. R., Tatham A. S. Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):68–71. doi: 10.1073/pnas.88.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Qin X., Waite J. H. Exotic collagen gradients in the byssus of the mussel Mytilus edulis. J Exp Biol. 1995 Mar;198(Pt 3):633–644. doi: 10.1242/jeb.198.3.633. [DOI] [PubMed] [Google Scholar]
  24. Rapaka R. S., Okamoto K., Urry D. W. Non-elastomeric polypeptide models of elastin. Synthesis of polyhexapeptides and a cross-linked polyhexapeptide. Int J Pept Protein Res. 1978 Feb;11(2):109–127. [PubMed] [Google Scholar]
  25. Tatham A. S., Hayes L., Shewry P. R., Urry D. W. Wheat seed proteins exhibit a complex mechanism of protein elasticity. Biochim Biophys Acta. 2001 Aug 13;1548(2):187–193. doi: 10.1016/s0167-4838(01)00232-1. [DOI] [PubMed] [Google Scholar]
  26. Tatham A. S., Shewry P. R. Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci. 2000 Nov;25(11):567–571. doi: 10.1016/s0968-0004(00)01670-4. [DOI] [PubMed] [Google Scholar]
  27. Trombitás K., Greaser M., Labeit S., Jin J. P., Kellermayer M., Helmes M., Granzier H. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol. 1998 Feb 23;140(4):853–859. doi: 10.1083/jcb.140.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Urry D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem. 1988 Feb;7(1):1–34. doi: 10.1007/BF01025411. [DOI] [PubMed] [Google Scholar]
  29. Urry D. W., Harris R. D., Long M. M., Prasad K. U. Polytetrapeptide of elastin. Temperature-correlated elastomeric force and structure development. Int J Pept Protein Res. 1986 Dec;28(6):649–660. [PubMed] [Google Scholar]
  30. Urry D. W., Henze R., Harris R. D., Prasad K. U. Polypentapeptide of elastin: temperature dependence correlation of elastomeric force and dielectric permittivity. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1082–1088. doi: 10.1016/0006-291x(84)91394-9. [DOI] [PubMed] [Google Scholar]
  31. Van Dijk A. A., De Boef E., Bekkers A., Van Wijk L. L., Van Swieten E., Hamer R. J., Robillard G. T. Structure characterization of the central repetitive domain of high molecular weight gluten proteins. II. Characterization in solution and in the dry state. Protein Sci. 1997 Mar;6(3):649–656. doi: 10.1002/pro.5560060314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waite J. H., Qin X. X., Coyne K. J. The peculiar collagens of mussel byssus. Matrix Biol. 1998 Jun;17(2):93–106. doi: 10.1016/s0945-053x(98)90023-3. [DOI] [PubMed] [Google Scholar]
  33. van Beek J. D., Kümmerlen J., Vollrath F., Meier B. H. Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):173–178. doi: 10.1016/s0141-8130(98)00083-x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES