Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Mar 29;357(1419):363–372. doi: 10.1098/rstb.2001.0924

Parental care and adaptive brood sex ratio manipulation in birds.

Dennis Hasselquist 1, Bart Kempenaers 1
PMCID: PMC1692942  PMID: 11958704

Abstract

Under many circumstances, it might be adaptive for parents to bias the investment in offspring in relation to sex. Recently developed molecular techniques that allow sex determination of newly hatched offspring have caused a surge in studies of avian sex allocation. Whether females bias the primary brood sex ratio in relation to factors such as environmental and parental quality is debated. Progress is hampered because the mechanisms for primary sex ratio manipulation are unknown. Moreover, publication bias against non-significant results may distort our view of adaptive sex ratio manipulation. Despite this, there is recent experimental evidence for adaptive brood sex ratio manipulation in birds. Parental care is a particularly likely candidate to affect the brood sex ratio because it can have strong direct effects on the fitness of both parents and their offspring. We investigate and make predictions of factors that can be important for adaptive brood sex ratio manipulation under different patterns of parental care. We encourage correlational studies based on sufficiently large datasets to ensure high statistical power, studies identifying and experimentally altering factors with sex-differential fitness effects that may cause brood sex ratio skew, and studies that experimentally manipulate brood sex ratio and investigate fitness effects.

Full Text

The Full Text of this article is available as a PDF (118.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht DJ. Sex ratio manipulation within broods of house wrens, Troglodytes aedon. Anim Behav. 2000 Jun;59(6):1227–1234. doi: 10.1006/anbe.1999.1420. [DOI] [PubMed] [Google Scholar]
  2. Blank J. L., Nolan V. Offspring sex ratio in red-winged blackbirds is dependent on maternal age. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6141–6145. doi: 10.1073/pnas.80.19.6141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blount JD, Houston DC, Møller AP. Why egg yolk is yellow. Trends Ecol Evol. 2000 Feb;15(2):47–49. doi: 10.1016/s0169-5347(99)01774-7. [DOI] [PubMed] [Google Scholar]
  4. Buchanan K. L., Catchpole C. K. Song as an indicator of male parental effort in the sedge warbler. Proc Biol Sci. 2000 Feb 22;267(1441):321–326. doi: 10.1098/rspb.2000.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burley N. Sex ratio manipulation and selection for attractiveness. Science. 1981 Feb 13;211(4483):721–722. doi: 10.1126/science.211.4483.721. [DOI] [PubMed] [Google Scholar]
  6. Clark A. B. Sex ratio and local resource competition in a prosimian primate. Science. 1978 Jul 14;201(4351):163–165. doi: 10.1126/science.201.4351.163. [DOI] [PubMed] [Google Scholar]
  7. Clutton-Brock T. H., Iason G. R. Sex ratio variation in mammals. Q Rev Biol. 1986 Sep;61(3):339–374. doi: 10.1086/415033. [DOI] [PubMed] [Google Scholar]
  8. Griffiths R., Daan S., Dijkstra C. Sex identification in birds using two CHD genes. Proc Biol Sci. 1996 Sep 22;263(1374):1251–1256. doi: 10.1098/rspb.1996.0184. [DOI] [PubMed] [Google Scholar]
  9. Griffiths R., Tiwari B. The isolation of molecular genetic markers for the identification of sex. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8324–8326. doi: 10.1073/pnas.90.18.8324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kilner R. Primary and secondary sex ratio manipulation by zebra finches. Anim Behav. 1998 Jul;56(1):155–164. doi: 10.1006/anbe.1998.0775. [DOI] [PubMed] [Google Scholar]
  11. Kirkpatrick M., Barton N. H. The strength of indirect selection on female mating preferences. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1282–1286. doi: 10.1073/pnas.94.4.1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Komdeur Jan, Pen Ido. Adaptive sex allocation in birds: the complexities of linking theory and practice. Philos Trans R Soc Lond B Biol Sci. 2002 Mar 29;357(1419):373–380. doi: 10.1098/rstb.2001.0927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krackow S. Potential mechanisms for sex ratio adjustment in mammals and birds. Biol Rev Camb Philos Soc. 1995 May;70(2):225–241. doi: 10.1111/j.1469-185x.1995.tb01066.x. [DOI] [PubMed] [Google Scholar]
  14. Krijgsveld K. L., Dijkstra C., Visser G. H., Daan S. Energy requirements for growth in relation to sexual size dimorphism in marsh harrier Circus aeruginosus nestlings. Physiol Zool. 1998 Nov-Dec;71(6):693–702. doi: 10.1086/515983. [DOI] [PubMed] [Google Scholar]
  15. Lessells C. M. Parentally biased favouritism: why should parents specialize in caring for different offspring? Philos Trans R Soc Lond B Biol Sci. 2002 Mar 29;357(1419):381–403. doi: 10.1098/rstb.2001.0928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lessells CM, Oddie KR, Mateman AC. Parental behaviour is unrelated to experimentally manipulated great tit brood sex ratio. Anim Behav. 1998 Aug;56(2):385–393. doi: 10.1006/anbe.1998.0763. [DOI] [PubMed] [Google Scholar]
  17. Nager R. G., Monaghan P., Griffiths R., Houston D. C., Dawson R. Experimental demonstration that offspring sex ratio varies with maternal condition. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):570–573. doi: 10.1073/pnas.96.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. doi: 10.1098/rspb.1997.0042. [DOI] [PMC free article] [Google Scholar]
  19. doi: 10.1098/rspb.1997.0153. [DOI] [PMC free article] [Google Scholar]
  20. doi: 10.1098/rspb.1997.0183. [DOI] [PMC free article] [Google Scholar]
  21. doi: 10.1098/rspb.1998.0375. [DOI] [PMC free article] [Google Scholar]
  22. Pen I., Weissing F. J. Sex-ratio optimization with helpers at the nest. Proc Biol Sci. 2000 Mar 22;267(1443):539–543. doi: 10.1098/rspb.2000.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Popescu O., Misevic G. N. Self-recognition by proteoglycans. Nature. 1997 Mar 20;386(6622):231–232. doi: 10.1038/386231b0. [DOI] [PubMed] [Google Scholar]
  24. Radford A. N., Blakey J. K. Intensity of nest defence is related to offspring sex ratio in the great tit Parus major. Proc Biol Sci. 2000 Mar 22;267(1443):535–538. doi: 10.1098/rspb.2000.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwabl H. Maternal testosterone in the avian egg enhances postnatal growth. Comp Biochem Physiol A Physiol. 1996 Jul;114(3):271–276. doi: 10.1016/0300-9629(96)00009-6. [DOI] [PubMed] [Google Scholar]
  26. Sheldon Ben C. Relating paternity to paternal care. Philos Trans R Soc Lond B Biol Sci. 2002 Mar 29;357(1419):341–350. doi: 10.1098/rstb.2001.0931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith N. C., Wallach M., Miller C. M., Morgenstern R., Braun R., Eckert J. Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection. Infect Immun. 1994 Apr;62(4):1348–1357. doi: 10.1128/iai.62.4.1348-1357.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trivers R. L., Willard D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science. 1973 Jan 5;179(4068):90–92. doi: 10.1126/science.179.4068.90. [DOI] [PubMed] [Google Scholar]
  29. Williams G. C. The question of adaptive sex ratio in outcrossed vertebrates. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):567–580. doi: 10.1098/rspb.1979.0085. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES