Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 May 29;357(1421):657–666. doi: 10.1098/rstb.2001.0983

Cluster size distributions: signatures of self-organization in spatial ecologies.

Mercedes Pascual 1, Manojit Roy 1, Frédéric Guichard 1, Glenn Flierl 1
PMCID: PMC1692977  PMID: 12079527

Abstract

Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic, exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions and perimeter-area curves follow power-law scalings. In the coexistence regime, these patterns are robust: their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend only weakly on the parameters of the systems. These distributions, in particular the values of their exponents, are close to those reported in the literature for systems associated with self-organized criticality (SOC) such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demonstrate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes of growth and inhibition in space, such as those in predator-prey and disturbance-recovery dynamics. Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions, would therefore require spatial forcing by environmental variability.

Full Text

The Full Text of this article is available as a PDF (598.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys Rev A Gen Phys. 1988 Jul 1;38(1):364–374. doi: 10.1103/physreva.38.364. [DOI] [PubMed] [Google Scholar]
  2. Blarer A., Doebeli M. In the red zone. Nature. 1996 Apr 18;380(6575):589–590. doi: 10.1038/380589b0. [DOI] [PubMed] [Google Scholar]
  3. Cohen J. E. Unexpected dominance of high frequencies in chaotic nonlinear population models. Nature. 1995 Dec 7;378(6557):610–612. doi: 10.1038/378610a0. [DOI] [PubMed] [Google Scholar]
  4. Drossel B, Schwabl F. Self-organized critical forest-fire model. Phys Rev Lett. 1992 Sep 14;69(11):1629–1632. doi: 10.1103/PhysRevLett.69.1629. [DOI] [PubMed] [Google Scholar]
  5. Durrett R., Levin S. Lessons on pattern formation from planet WATOR. J Theor Biol. 2000 Jul 21;205(2):201–214. doi: 10.1006/jtbi.2000.2061. [DOI] [PubMed] [Google Scholar]
  6. GREEN D. E., KOHOUT P. M., MII S. Isolation of succinic dehydrogenase from beef heart mitochondria. Biochim Biophys Acta. 1954 Jun;14(2):295–296. doi: 10.1016/0006-3002(54)90180-8. [DOI] [PubMed] [Google Scholar]
  7. Gabrielov A., Newman W. I., Turcotte D. L. Exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt A):5293–5300. doi: 10.1103/physreve.60.5293. [DOI] [PubMed] [Google Scholar]
  8. Hastings H. M., Pekelney R., Monticciolo R., vun Kannon D., del Monte D. Time scales, persistence and patchiness. Biosystems. 1982;15(4):281–289. doi: 10.1016/0303-2647(82)90043-0. [DOI] [PubMed] [Google Scholar]
  9. Kaitala V., Ylikarjula J., Ranta E., Lundberg P. Population dynamics and the colour of environmental noise. Proc Biol Sci. 1997 Jul 22;264(1384):943–948. doi: 10.1098/rspb.1997.0130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malamud BD, Morein G, Turcotte DL. Forest fires: An example of self-organized critical behavior . Science. 1998 Sep 18;281(5384):1840–1842. doi: 10.1126/science.281.5384.1840. [DOI] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1998.0361. [DOI] [PMC free article] [Google Scholar]
  12. Petchey O. L. Environmental colour affects aspects of single-species population dynamics. Proc Biol Sci. 2000 Apr 22;267(1445):747–754. doi: 10.1098/rspb.2000.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rhodes C. J., Anderson R. M. Power laws governing epidemics in isolated populations. Nature. 1996 Jun 13;381(6583):600–602. doi: 10.1038/381600a0. [DOI] [PubMed] [Google Scholar]
  14. Rhodes C. J., Jensen H. J., Anderson R. M. On the critical behaviour of simple epidemics. Proc Biol Sci. 1997 Nov 22;264(1388):1639–1646. doi: 10.1098/rspb.1997.0228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Solé RV, Manrubia SC. Self-similarity in rain forests: Evidence for a critical state. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jun;51(6):6250–6253. doi: 10.1103/physreve.51.6250. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES