Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jun 29;357(1422):761–766. doi: 10.1098/rstb.2002.1093

Roles for kinesin and myosin during cytokinesis.

Peter K Hepler 1, Aline Valster 1, Tasha Molchan 1, Jan W Vos 1
PMCID: PMC1692982  PMID: 12079671

Abstract

Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport.

Full Text

The Full Text of this article is available as a PDF (691.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada T., Kuriyama R., Shibaoka H. TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci. 1997 Jan;110(Pt 2):179–189. doi: 10.1242/jcs.110.2.179. [DOI] [PubMed] [Google Scholar]
  2. Berg J. S., Powell B. C., Cheney R. E. A millennial myosin census. Mol Biol Cell. 2001 Apr;12(4):780–794. doi: 10.1091/mbc.12.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowser J., Reddy A. S. Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J. 1997 Dec;12(6):1429–1437. doi: 10.1046/j.1365-313x.1997.12061429.x. [DOI] [PubMed] [Google Scholar]
  4. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldstein L. S., Philp A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol. 1999;15:141–183. doi: 10.1146/annurev.cellbio.15.1.141. [DOI] [PubMed] [Google Scholar]
  6. Lee W. L., Bezanilla M., Pollard T. D. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol. 2000 Nov 13;151(4):789–800. doi: 10.1083/jcb.151.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee Y. R., Liu B. Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol. 2000 Jun 29;10(13):797–800. doi: 10.1016/s0960-9822(00)00564-9. [DOI] [PubMed] [Google Scholar]
  8. Liu B., Cyr R. J., Palevitz B. A. A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell. 1996 Jan;8(1):119–132. doi: 10.1105/tpc.8.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liu L., Zhou J., Pesacreta T. C. Maize myosins: diversity, localization, and function. Cell Motil Cytoskeleton. 2001 Feb;48(2):130–148. doi: 10.1002/1097-0169(200102)48:2<130::AID-CM1004>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  10. Molchan Tasha M., Valster Aline H., Hepler Peter K. Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta. 2001 Nov 14;214(5):683–693. doi: 10.1007/s004250100672. [DOI] [PubMed] [Google Scholar]
  11. Narasimhulu S. B., Kao Y. L., Reddy A. S. Interaction of Arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca(2+)-calmodulin. Plant J. 1997 Nov;12(5):1139–1149. doi: 10.1046/j.1365-313x.1997.12051139.x. [DOI] [PubMed] [Google Scholar]
  12. Narasimhulu S. B., Reddy A. S. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell. 1998 Jun;10(6):957–965. doi: 10.1105/tpc.10.6.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nebenführ A., Gallagher L. A., Dunahay T. G., Frohlick J. A., Mazurkiewicz A. M., Meehl J. B., Staehelin L. A. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 1999 Dec;121(4):1127–1142. doi: 10.1104/pp.121.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Radford J. E., White R. G. Localization of a myosin-like protein to plasmodesmata. Plant J. 1998 Jun;14(6):743–750. doi: 10.1046/j.1365-313x.1998.00162.x. [DOI] [PubMed] [Google Scholar]
  15. Reddy A. S. Molecular motors and their functions in plants. Int Rev Cytol. 2001;204:97–178. doi: 10.1016/s0074-7696(01)04004-9. [DOI] [PubMed] [Google Scholar]
  16. Reichelt S., Knight A. E., Hodge T. P., Baluska F., Samaj J., Volkmann D., Kendrick-Jones J. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J. 1999 Sep;19(5):555–567. doi: 10.1046/j.1365-313x.1999.00553.x. [DOI] [PubMed] [Google Scholar]
  17. Saitoh M., Ishikawa T., Matsushima S., Naka M., Hidaka H. Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem. 1987 Jun 5;262(16):7796–7801. [PubMed] [Google Scholar]
  18. Samaj J., Peters M., Volkmann D., Baluska F. Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices. Plant Cell Physiol. 2000 May;41(5):571–582. doi: 10.1093/pcp/41.5.571. [DOI] [PubMed] [Google Scholar]
  19. Smirnova E. A., Reddy A. S., Bowser J., Bajer A. S. Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskeleton. 1998;41(3):271–280. doi: 10.1002/(SICI)1097-0169(1998)41:3<271::AID-CM8>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  20. Staehelin L. A., Hepler P. K. Cytokinesis in higher plants. Cell. 1996 Mar 22;84(6):821–824. doi: 10.1016/s0092-8674(00)81060-0. [DOI] [PubMed] [Google Scholar]
  21. Surrey T., Nedelec F., Leibler S., Karsenti E. Physical properties determining self-organization of motors and microtubules. Science. 2001 May 11;292(5519):1167–1171. doi: 10.1126/science.1059758. [DOI] [PubMed] [Google Scholar]
  22. Valster A. H., Pierson E. S., Valenta R., Hepler P. K., Emons AMC. Probing the Plant Actin Cytoskeleton during Cytokinesis and Interphase by Profilin Microinjection. Plant Cell. 1997 Oct;9(10):1815–1824. doi: 10.1105/tpc.9.10.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vos J. W., Safadi F., Reddy A. S., Hepler P. K. The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell. 2000 Jun;12(6):979–990. doi: 10.1105/tpc.12.6.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vos J. W., Valster A. H., Hepler P. K. Methods for studying cell division in higher plants. Methods Cell Biol. 1999;61:413–437. doi: 10.1016/s0091-679x(08)61992-5. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES