Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jul 29;357(1423):917–925. doi: 10.1098/rstb.2002.1105

Molecular basis of cold adaptation.

Salvino D'Amico 1, Paule Claverie 1, Tony Collins 1, Daphné Georlette 1, Emmanuelle Gratia 1, Anne Hoyoux 1, Marie-Alice Meuwis 1, Georges Feller 1, Charles Gerday 1
PMCID: PMC1692995  PMID: 12171655

Abstract

Cold-adapted, or psychrophilic, organisms are able to thrive at low temperatures in permanently cold environments, which in fact characterize the greatest proportion of our planet. Psychrophiles include both prokaryotic and eukaryotic organisms and thus represent a significant proportion of the living world. These organisms produce cold-evolved enzymes that are partially able to cope with the reduction in chemical reaction rates induced by low temperatures. As a rule, cold-active enzymes display a high catalytic efficiency, associated however, with a low thermal stability. In most cases, the adaptation to cold is achieved through a reduction in the activation energy that possibly originates from an increased flexibility of either a selected area or of the overall protein structure. This enhanced plasticity seems in turn to be induced by the weak thermal stability of psychrophilic enzymes. The adaptation strategies are beginning to be understood thanks to recent advances in the elucidation of the molecular characteristics of cold-adapted enzymes derived from X-ray crystallography, protein engineering and biophysical methods. Psychrophilic organisms and their enzymes have, in recent years, increasingly attracted the attention of the scientific community due to their peculiar properties that render them particularly useful in investigating the possible relationship existing between stability, flexibility and specific activity and as valuable tools for biotechnological purposes.

Full Text

The Full Text of this article is available as a PDF (169.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajari N., Feller G., Gerday C., Haser R. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci. 1998 Mar;7(3):564–572. doi: 10.1002/pro.5560070304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aghajari N., Feller G., Gerday C., Haser R. Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Structure. 1998 Dec 15;6(12):1503–1516. doi: 10.1016/s0969-2126(98)00149-x. [DOI] [PubMed] [Google Scholar]
  3. Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
  4. Aittaleb M., Hubner R., Lamotte-Brasseur J., Gerday C. Cold adaptation parameters derived from cDNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta. Protein Eng. 1997 May;10(5):475–477. doi: 10.1093/protein/10.5.475. [DOI] [PubMed] [Google Scholar]
  5. Akanuma S., Yamagishi A., Tanaka N., Oshima T. Further improvement of the thermal stability of a partially stabilized Bacillus subtilis 3-isopropylmalate dehydrogenase variant by random and site-directed mutagenesis. Eur J Biochem. 1999 Mar;260(2):499–504. doi: 10.1046/j.1432-1327.1999.00182.x. [DOI] [PubMed] [Google Scholar]
  6. Akanuma S., Yamagishi A., Tanaka N., Oshima T. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Protein Sci. 1998 Mar;7(3):698–705. doi: 10.1002/pro.5560070319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alvarez M., Zeelen J. P., Mainfroid V., Rentier-Delrue F., Martial J. A., Wyns L., Wierenga R. K., Maes D. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties. J Biol Chem. 1998 Jan 23;273(4):2199–2206. doi: 10.1074/jbc.273.4.2199. [DOI] [PubMed] [Google Scholar]
  8. Carrea G., Colombo G. Coupling high enzyme activity and stability: a challenging target. Trends Biotechnol. 2000 Oct;18(10):401–401. doi: 10.1016/s0167-7799(00)01500-6. [DOI] [PubMed] [Google Scholar]
  9. Cherry J. R., Lamsa M. H., Schneider P., Vind J., Svendsen A., Jones A., Pedersen A. H. Directed evolution of a fungal peroxidase. Nat Biotechnol. 1999 Apr;17(4):379–384. doi: 10.1038/7939. [DOI] [PubMed] [Google Scholar]
  10. D'Amico S., Gerday C., Feller G. Structural similarities and evolutionary relationships in chloride-dependent alpha-amylases. Gene. 2000 Jul 25;253(1):95–105. doi: 10.1016/s0378-1119(00)00229-8. [DOI] [PubMed] [Google Scholar]
  11. Demirjian D. C., Morís-Varas F., Cassidy C. S. Enzymes from extremophiles. Curr Opin Chem Biol. 2001 Apr;5(2):144–151. doi: 10.1016/s1367-5931(00)00183-6. [DOI] [PubMed] [Google Scholar]
  12. Feller G., Gerday C. Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci. 1997 Oct;53(10):830–841. doi: 10.1007/s000180050103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feller G., Le Bussy O., Gerday C. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant alpha-amylase. Appl Environ Microbiol. 1998 Mar;64(3):1163–1165. doi: 10.1128/aem.64.3.1163-1165.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feller G., Payan F., Theys F., Qian M., Haser R., Gerday C. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem. 1994 Jun 1;222(2):441–447. doi: 10.1111/j.1432-1033.1994.tb18883.x. [DOI] [PubMed] [Google Scholar]
  15. Feller G., d'Amico D., Gerday C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry. 1999 Apr 6;38(14):4613–4619. doi: 10.1021/bi982650+. [DOI] [PubMed] [Google Scholar]
  16. Fischer C. J., Schauerte J. A., Wisser K. C., Gafni A., Steel D. G. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence. Biochemistry. 2000 Feb 15;39(6):1455–1461. doi: 10.1021/bi991560h. [DOI] [PubMed] [Google Scholar]
  17. Georlette D., Jónsson Z. O., Van Petegem F., Chessa J., Van Beeumen J., Hübscher U., Gerday C. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur J Biochem. 2000 Jun;267(12):3502–3512. doi: 10.1046/j.1432-1327.2000.01377.x. [DOI] [PubMed] [Google Scholar]
  18. Gerday C., Aittaleb M., Arpigny J. L., Baise E., Chessa J. P., Garsoux G., Petrescu I., Feller G. Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta. 1997 Oct 17;1342(2):119–131. doi: 10.1016/s0167-4838(97)00093-9. [DOI] [PubMed] [Google Scholar]
  19. Gerday C., Aittaleb M., Bentahir M., Chessa J. P., Claverie P., Collins T., D'Amico S., Dumont J., Garsoux G., Georlette D. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 2000 Mar;18(3):103–107. doi: 10.1016/s0167-7799(99)01413-4. [DOI] [PubMed] [Google Scholar]
  20. Gershenson A., Schauerte J. A., Giver L., Arnold F. H. Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases. Biochemistry. 2000 Apr 25;39(16):4658–4665. doi: 10.1021/bi992473s. [DOI] [PubMed] [Google Scholar]
  21. Holland L. Z., McFall-Ngai M., Somero G. N. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Biochemistry. 1997 Mar 18;36(11):3207–3215. doi: 10.1021/bi962664k. [DOI] [PubMed] [Google Scholar]
  22. Hoyoux A., Jennes I., Dubois P., Genicot S., Dubail F., François J. M., Baise E., Feller G., Gerday C. Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol. 2001 Apr;67(4):1529–1535. doi: 10.1128/AEM.67.4.1529-1535.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lebbink J. H., Kaper T., Bron P., van der Oost J., de Vos W. M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry. 2000 Apr 4;39(13):3656–3665. doi: 10.1021/bi991483q. [DOI] [PubMed] [Google Scholar]
  24. Lonhienne T., Gerday C., Feller G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta. 2000 Nov 30;1543(1):1–10. doi: 10.1016/s0167-4838(00)00210-7. [DOI] [PubMed] [Google Scholar]
  25. Lonhienne T., Zoidakis J., Vorgias C. E., Feller G., Gerday C., Bouriotis V. Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol. 2001 Jul 6;310(2):291–297. doi: 10.1006/jmbi.2001.4774. [DOI] [PubMed] [Google Scholar]
  26. Mandelman D., Bentahir M., Feller G., Gerday C., Haser R. Crystallization and preliminary X-ray analysis of a bacterial psychrophilic enzyme, phosphoglycerate kinase. Acta Crystallogr D Biol Crystallogr. 2001 Oct 25;57(Pt 11):1666–1668. doi: 10.1107/s0907444901012069. [DOI] [PubMed] [Google Scholar]
  27. Merz A., Yee M. C., Szadkowski H., Pappenberger G., Crameri A., Stemmer W. P., Yanofsky C., Kirschner K. Improving the catalytic activity of a thermophilic enzyme at low temperatures. Biochemistry. 2000 Feb 8;39(5):880–889. doi: 10.1021/bi992333i. [DOI] [PubMed] [Google Scholar]
  28. Miyazaki K., Wintrode P. L., Grayling R. A., Rubingh D. N., Arnold F. H. Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol. 2000 Apr 7;297(4):1015–1026. doi: 10.1006/jmbi.2000.3612. [DOI] [PubMed] [Google Scholar]
  29. Narinx E., Baise E., Gerday C. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng. 1997 Nov;10(11):1271–1279. doi: 10.1093/protein/10.11.1271. [DOI] [PubMed] [Google Scholar]
  30. Petrescu I., Lamotte-Brasseur J., Chessa J. P., Ntarima P., Claeyssens M., Devreese B., Marino G., Gerday C. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles. 2000 Jun;4(3):137–144. doi: 10.1007/s007920070028. [DOI] [PubMed] [Google Scholar]
  31. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  32. Roovers M., Sanchez R., Legrain C., Glansdorff N. Experimental evolution of enzyme temperature activity profile: selection in vivo and characterization of low-temperature-adapted mutants of Pyrococcus furiosus ornithine carbamoyltransferase. J Bacteriol. 2001 Feb;183(3):1101–1105. doi: 10.1128/JB.183.3.1101-1105.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell N. J. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol. 1998;61:1–21. doi: 10.1007/BFb0102287. [DOI] [PubMed] [Google Scholar]
  34. Russell N. J. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles. 2000 Apr;4(2):83–90. doi: 10.1007/s007920050141. [DOI] [PubMed] [Google Scholar]
  35. Russell R. J., Gerike U., Danson M. J., Hough D. W., Taylor G. L. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure. 1998 Mar 15;6(3):351–361. doi: 10.1016/s0969-2126(98)00037-9. [DOI] [PubMed] [Google Scholar]
  36. Smalås A. O., Leiros H. K., Os V., Willassen N. P. Cold adapted enzymes. Biotechnol Annu Rev. 2000;6:1–57. doi: 10.1016/s1387-2656(00)06018-x. [DOI] [PubMed] [Google Scholar]
  37. Taguchi S., Ozaki A., Momose H. Engineering of a cold-adapted protease by sequential random mutagenesis and a screening system. Appl Environ Microbiol. 1998 Feb;64(2):492–495. doi: 10.1128/aem.64.2.492-495.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Villeret V., Chessa J. P., Gerday C., Van Beeumen J. Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa. Protein Sci. 1997 Nov;6(11):2462–2464. doi: 10.1002/pro.5560061121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wintrode P. L., Miyazaki K., Arnold F. H. Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta. 2001 Sep 10;1549(1):1–8. doi: 10.1016/s0167-4838(01)00226-6. [DOI] [PubMed] [Google Scholar]
  40. Zhao H., Arnold F. H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 1999 Jan;12(1):47–53. doi: 10.1093/protein/12.1.47. [DOI] [PubMed] [Google Scholar]
  41. Závodszky P., Kardos J., Svingor, Petsko G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406–7411. doi: 10.1073/pnas.95.13.7406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES