Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):1003–1037. doi: 10.1098/rstb.2002.1114

The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.

Nikos K Logothetis 1
PMCID: PMC1693017  PMID: 12217171

Abstract

Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman J. J., Grove T. H., Wong G. G., Gadian D. G., Radda G. K. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 1980 Jan 10;283(5743):167–170. doi: 10.1038/283167a0. [DOI] [PubMed] [Google Scholar]
  2. Ahissar E., Vaadia E. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8935–8939. doi: 10.1073/pnas.87.22.8935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albright T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol. 1984 Dec;52(6):1106–1130. doi: 10.1152/jn.1984.52.6.1106. [DOI] [PubMed] [Google Scholar]
  4. Ames A., 3rd CNS energy metabolism as related to function. Brain Res Brain Res Rev. 2000 Nov;34(1-2):42–68. doi: 10.1016/s0165-0173(00)00038-2. [DOI] [PubMed] [Google Scholar]
  5. Ances B. M., Zarahn E., Greenberg J. H., Detre J. A. Coupling of neural activation to blood flow in the somatosensory cortex of rats is time-intensity separable, but not linear. J Cereb Blood Flow Metab. 2000 Jun;20(6):921–930. doi: 10.1097/00004647-200006000-00004. [DOI] [PubMed] [Google Scholar]
  6. Apostol G., Creutzfeldt O. D. Crosscorrelation between the activity of septal units and hippocampal EEG during arousal. Brain Res. 1974 Feb 15;67(1):65–75. doi: 10.1016/0006-8993(74)90298-4. [DOI] [PubMed] [Google Scholar]
  7. Arezzo J., Legatt A. D., Vaughan H. G., Jr Topography and intracranial sources of somatosensory evoked potentials in the monkey. I. Early components. Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):155–172. doi: 10.1016/0013-4694(79)90065-8. [DOI] [PubMed] [Google Scholar]
  8. Attwell D., Laughlin S. B. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001 Oct;21(10):1133–1145. doi: 10.1097/00004647-200110000-00001. [DOI] [PubMed] [Google Scholar]
  9. Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol. 1984 Dec;143(6):1157–1166. doi: 10.2214/ajr.143.6.1157. [DOI] [PubMed] [Google Scholar]
  10. Axel L. Blood flow effects in magnetic resonance imaging. Magn Reson Annu. 1986:237–244. [PubMed] [Google Scholar]
  11. Bandettini P. A., Kwong K. K., Davis T. L., Tootell R. B., Wong E. C., Fox P. T., Belliveau J. W., Weisskoff R. M., Rosen B. R. Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation. Hum Brain Mapp. 1997;5(2):93–109. [PubMed] [Google Scholar]
  12. Bandettini P. A., Wong E. C., Hinks R. S., Tikofsky R. S., Hyde J. S. Time course EPI of human brain function during task activation. Magn Reson Med. 1992 Jun;25(2):390–397. doi: 10.1002/mrm.1910250220. [DOI] [PubMed] [Google Scholar]
  13. Barrenechea C., Pedemonte M., Nuñez A., García-Austt E. In vivo intracellular recordings of medial septal and diagonal band of Broca neurons: relationships with theta rhythm. Exp Brain Res. 1995;103(1):31–40. doi: 10.1007/BF00241962. [DOI] [PubMed] [Google Scholar]
  14. Belle V., Delon-Martin C., Massarelli R., Decety J., Le Bas J. F., Benabid A. L., Segebarth C. Intracranial gradient-echo and spin-echo functional MR angiography in humans. Radiology. 1995 Jun;195(3):739–746. doi: 10.1148/radiology.195.3.7754004. [DOI] [PubMed] [Google Scholar]
  15. Belliveau J. W., Kennedy D. N., Jr, McKinstry R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady T. J., Rosen B. R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991 Nov 1;254(5032):716–719. doi: 10.1126/science.1948051. [DOI] [PubMed] [Google Scholar]
  16. Blake Randolph, Logothetis Nikos K. Visual competition. Nat Rev Neurosci. 2002 Jan;3(1):13–21. doi: 10.1038/nrn701. [DOI] [PubMed] [Google Scholar]
  17. Bock C., Schmitz B., Kerskens C. M., Gyngell M. L., Hossmann K. A., Hoehn-Berlage M. Functional MRI of somatosensory activation in rat: effect of hypercapnic up-regulation on perfusion- and BOLD-imaging. Magn Reson Med. 1998 Mar;39(3):457–461. doi: 10.1002/mrm.1910390316. [DOI] [PubMed] [Google Scholar]
  18. Bonmassar G., Anami K., Ives J., Belliveau J. W. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport. 1999 Jun 23;10(9):1893–1897. doi: 10.1097/00001756-199906230-00018. [DOI] [PubMed] [Google Scholar]
  19. Boxerman J. L., Bandettini P. A., Kwong K. K., Baker J. R., Davis T. L., Rosen B. R., Weisskoff R. M. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995 Jul;34(1):4–10. doi: 10.1002/mrm.1910340103. [DOI] [PubMed] [Google Scholar]
  20. Boxerman J. L., Hamberg L. M., Rosen B. R., Weisskoff R. M. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995 Oct;34(4):555–566. doi: 10.1002/mrm.1910340412. [DOI] [PubMed] [Google Scholar]
  21. Brooks R. A., Battocletti J. H., Sances A., Jr, Larson S. J., Bowman R. L., Kudravcev V. Nuclear magnetic relaxation in blood. IEEE Trans Biomed Eng. 1975 Jan;22(1):12–18. doi: 10.1109/tbme.1975.324533. [DOI] [PubMed] [Google Scholar]
  22. Buchwald J. S., Grover F. S. Amplitudes of background fast activity characteristic of specific brain sites. J Neurophysiol. 1970 Jan;33(1):148–159. doi: 10.1152/jn.1970.33.1.148. [DOI] [PubMed] [Google Scholar]
  23. Burke M., Schwindt W., Ludwig U., Hennig J., Hoehn M. Facilitation of electric forepaw stimulation-induced somatosensory activation in rats by additional acoustic stimulation: an fMRI investigation. Magn Reson Med. 2000 Aug;44(2):317–321. doi: 10.1002/1522-2594(200008)44:2<317::aid-mrm20>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  24. Buxton R. B., Frank L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 1997 Jan;17(1):64–72. doi: 10.1097/00004647-199701000-00009. [DOI] [PubMed] [Google Scholar]
  25. Buxton R. B. The elusive initial dip. Neuroimage. 2001 Jun;13(6 Pt 1):953–958. doi: 10.1006/nimg.2001.0814. [DOI] [PubMed] [Google Scholar]
  26. Buxton R. B., Wong E. C., Frank L. R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998 Jun;39(6):855–864. doi: 10.1002/mrm.1910390602. [DOI] [PubMed] [Google Scholar]
  27. Buzsáki G., Chrobak J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol. 1995 Aug;5(4):504–510. doi: 10.1016/0959-4388(95)80012-3. [DOI] [PubMed] [Google Scholar]
  28. Cannestra A. F., Pouratian N., Bookheimer S. Y., Martin N. A., Beckerand D. P., Toga A. W. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb Cortex. 2001 Aug;11(8):773–782. doi: 10.1093/cercor/11.8.773. [DOI] [PubMed] [Google Scholar]
  29. Chang C., Shyu B. C. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res. 2001 Apr 6;897(1-2):71–81. doi: 10.1016/s0006-8993(01)02094-7. [DOI] [PubMed] [Google Scholar]
  30. Colby C. L., Duhamel J. R., Goldberg M. E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol. 1993 Mar;69(3):902–914. doi: 10.1152/jn.1993.69.3.902. [DOI] [PubMed] [Google Scholar]
  31. Cormack A. M. Reconstruction of densities from their projections, with applications in radiological physics. Phys Med Biol. 1973 Mar;18(2):195–207. doi: 10.1088/0031-9155/18/2/003. [DOI] [PubMed] [Google Scholar]
  32. Darian-Smith C., Gilbert C. D. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci. 1995 Mar;15(3 Pt 1):1631–1647. doi: 10.1523/JNEUROSCI.15-03-01631.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Das A., Gilbert C. D. Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. J Neurophysiol. 1995 Aug;74(2):779–792. doi: 10.1152/jn.1995.74.2.779. [DOI] [PubMed] [Google Scholar]
  34. Davis T. L., Kwong K. K., Weisskoff R. M., Rosen B. R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834–1839. doi: 10.1073/pnas.95.4.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. De Valois R. L., Yund E. W., Hepler N. The orientation and direction selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):531–544. doi: 10.1016/0042-6989(82)90112-2. [DOI] [PubMed] [Google Scholar]
  36. DeYoe E. A., Bandettini P., Neitz J., Miller D., Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods. 1994 Oct;54(2):171–187. doi: 10.1016/0165-0270(94)90191-0. [DOI] [PubMed] [Google Scholar]
  37. Desimone R., Schein S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol. 1987 Mar;57(3):835–868. doi: 10.1152/jn.1987.57.3.835. [DOI] [PubMed] [Google Scholar]
  38. Desimone R., Ungerleider L. G. Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol. 1986 Jun 8;248(2):164–189. doi: 10.1002/cne.902480203. [DOI] [PubMed] [Google Scholar]
  39. Disbrow E. A., Slutsky D. A., Roberts T. P., Krubitzer L. A. Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9718–9723. doi: 10.1073/pnas.170205497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Disbrow E., Roberts T. P., Slutsky D., Krubitzer L. The use of fMRI for determining the topographic organization of cortical fields in human and nonhuman primates. Brain Res. 1999 May 22;829(1-2):167–173. doi: 10.1016/s0006-8993(99)01297-4. [DOI] [PubMed] [Google Scholar]
  41. Dow B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol. 1974 Sep;37(5):927–946. doi: 10.1152/jn.1974.37.5.927. [DOI] [PubMed] [Google Scholar]
  42. Dubowitz D. J., Chen D. Y., Atkinson D. J., Scadeng M., Martinez A., Andersen M. B., Andersen R. A., Bradley W. G., Jr Direct comparison of visual cortex activation in human and non-human primates using functional magnetic resonance imaging. J Neurosci Methods. 2001 May 30;107(1-2):71–80. doi: 10.1016/s0165-0270(01)00353-3. [DOI] [PubMed] [Google Scholar]
  43. Duvernoy H. M., Delon S., Vannson J. L. Cortical blood vessels of the human brain. Brain Res Bull. 1981 Nov;7(5):519–579. doi: 10.1016/0361-9230(81)90007-1. [DOI] [PubMed] [Google Scholar]
  44. Ehman R. L., Felmlee J. P. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989 Oct;173(1):255–263. doi: 10.1148/radiology.173.1.2781017. [DOI] [PubMed] [Google Scholar]
  45. Elul R. The genesis of the EEG. Int Rev Neurobiol. 1971 Jul;15:227–272. doi: 10.1016/s0074-7742(08)60333-5. [DOI] [PubMed] [Google Scholar]
  46. Elul R. The physiological interpretation of amplitude histograms of the EEG. Electroencephalogr Clin Neurophysiol. 1969 Sep;27(7):703–704. doi: 10.1016/0013-4694(69)91353-4. [DOI] [PubMed] [Google Scholar]
  47. Engel S. A., Glover G. H., Wandell B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997 Mar;7(2):181–192. doi: 10.1093/cercor/7.2.181. [DOI] [PubMed] [Google Scholar]
  48. Engel S. A., Rumelhart D. E., Wandell B. A., Lee A. T., Glover G. H., Chichilnisky E. J., Shadlen M. N. fMRI of human visual cortex. Nature. 1994 Jun 16;369(6481):525–525. doi: 10.1038/369525a0. [DOI] [PubMed] [Google Scholar]
  49. Ernst T., Hennig J. Observation of a fast response in functional MR. Magn Reson Med. 1994 Jul;32(1):146–149. doi: 10.1002/mrm.1910320122. [DOI] [PubMed] [Google Scholar]
  50. FROMM G. H., BOND H. W. SLOW CHANGES IN THE ELECTROCORTICOGRAM AND THE ACTIVITY OF CORTICAL NEURONS. Electroencephalogr Clin Neurophysiol. 1964 Nov;17:520–523. doi: 10.1016/0013-4694(64)90182-8. [DOI] [PubMed] [Google Scholar]
  51. Farmer T. H., Cofer G. P., Johnson G. A. Maximizing contrast to noise with inductively coupled implanted coils. Invest Radiol. 1990 May;25(5):552–558. doi: 10.1097/00004424-199005000-00013. [DOI] [PubMed] [Google Scholar]
  52. Fox P. T., Mintun M. A., Raichle M. E., Miezin F. M., Allman J. M., Van Essen D. C. Mapping human visual cortex with positron emission tomography. 1986 Oct 30-Nov 5Nature. 323(6091):806–809. doi: 10.1038/323806a0. [DOI] [PubMed] [Google Scholar]
  53. Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
  55. Frahm J., Krüger G., Merboldt K. D., Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996 Feb;35(2):143–148. doi: 10.1002/mrm.1910350202. [DOI] [PubMed] [Google Scholar]
  56. Frahm J., Merboldt K. D., Hänicke W., Kleinschmidt A., Boecker H. Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed. 1994 Mar;7(1-2):45–53. doi: 10.1002/nbm.1940070108. [DOI] [PubMed] [Google Scholar]
  57. Fried I., MacDonald K. A., Wilson C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron. 1997 May;18(5):753–765. doi: 10.1016/s0896-6273(00)80315-3. [DOI] [PubMed] [Google Scholar]
  58. Fromm G. H., Bond H. W. The relationship between neuron activity and cortical steady potentials. Electroencephalogr Clin Neurophysiol. 1967 Feb;22(2):159–166. doi: 10.1016/0013-4694(67)90156-3. [DOI] [PubMed] [Google Scholar]
  59. Frostig R. D., Lieke E. E., Ts'o D. Y., Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082–6086. doi: 10.1073/pnas.87.16.6082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Gandhi S. P., Heeger D. J., Boynton G. M. Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3314–3319. doi: 10.1073/pnas.96.6.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Garwood M., Uğurbil K., Rath A. R., Bendall M. R., Ross B. D., Mitchell S. L., Merkle H. Magnetic resonance imaging with adiabatic pulses using a single surface coil for RF transmission and signal detection. Magn Reson Med. 1989 Jan;9(1):25–34. doi: 10.1002/mrm.1910090105. [DOI] [PubMed] [Google Scholar]
  62. Glover G. H., Lai S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn Reson Med. 1998 Mar;39(3):361–368. doi: 10.1002/mrm.1910390305. [DOI] [PubMed] [Google Scholar]
  63. Glover G. H., Lee A. T. Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn Reson Med. 1995 May;33(5):624–635. doi: 10.1002/mrm.1910330507. [DOI] [PubMed] [Google Scholar]
  64. Goldberg M. E., Wurtz R. H. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol. 1972 Jul;35(4):542–559. doi: 10.1152/jn.1972.35.4.542. [DOI] [PubMed] [Google Scholar]
  65. Granger R., Lynch G. Higher olfactory processes: perceptual learning and memory. Curr Opin Neurobiol. 1991 Aug;1(2):209–214. doi: 10.1016/0959-4388(91)90080-q. [DOI] [PubMed] [Google Scholar]
  66. Gray C. M., Maldonado P. E., Wilson M., McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods. 1995 Dec;63(1-2):43–54. doi: 10.1016/0165-0270(95)00085-2. [DOI] [PubMed] [Google Scholar]
  67. Gray C. M., McCormick D. A. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science. 1996 Oct 4;274(5284):109–113. doi: 10.1126/science.274.5284.109. [DOI] [PubMed] [Google Scholar]
  68. Gray J. A., Ball G. G. Frequency-specific relation between hippocampal theta rhythm, behavior, and amobarbital action. Science. 1970 Jun 5;168(3936):1246–1248. doi: 10.1126/science.168.3936.1246. [DOI] [PubMed] [Google Scholar]
  69. Grill-Spector K., Kushnir T., Edelman S., Avidan G., Itzchak Y., Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999 Sep;24(1):187–203. doi: 10.1016/s0896-6273(00)80832-6. [DOI] [PubMed] [Google Scholar]
  70. Grover F. S., Buchwald J. S. Correlation of cell size with amplitude of background fast activity in specific brain nuclei. J Neurophysiol. 1970 Jan;33(1):160–171. doi: 10.1152/jn.1970.33.1.160. [DOI] [PubMed] [Google Scholar]
  71. Gruetter R., Boesch C., Martin E., Wüthrich K. A method for rapid evaluation of saturation factors in in vivo surface coil NMR spectroscopy using B1-insensitive pulse cycles. NMR Biomed. 1990 Dec;3(6):265–271. doi: 10.1002/nbm.1940030605. [DOI] [PubMed] [Google Scholar]
  72. HUNT C. C. The reflex activity of mammalian small-nerve fibres. J Physiol. 1951 Dec 28;115(4):456–469. doi: 10.1113/jphysiol.1951.sp004681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Hawken M. J., Parker A. J., Lund J. S. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J Neurosci. 1988 Oct;8(10):3541–3548. doi: 10.1523/JNEUROSCI.08-10-03541.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. He S., Cohen E. R., Hu X. Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr Biol. 1998 Nov 5;8(22):1215–1218. doi: 10.1016/s0960-9822(07)00512-x. [DOI] [PubMed] [Google Scholar]
  75. Heeger D. J., Huk A. C., Geisler W. S., Albrecht D. G. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci. 2000 Jul;3(7):631–633. doi: 10.1038/76572. [DOI] [PubMed] [Google Scholar]
  76. Heeger David J., Ress David. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002 Feb;3(2):142–151. doi: 10.1038/nrn730. [DOI] [PubMed] [Google Scholar]
  77. Hendrich K., Xu Y., Kim S. G., Uğurbil K. Surface coil cardiac tagging and 31P spectroscopic localization with B1-insensitive adiabatic pulses. Magn Reson Med. 1994 May;31(5):541–545. doi: 10.1002/mrm.1910310511. [DOI] [PubMed] [Google Scholar]
  78. Henze D. A., Borhegyi Z., Csicsvari J., Mamiya A., Harris K. D., Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 2000 Jul;84(1):390–400. doi: 10.1152/jn.2000.84.1.390. [DOI] [PubMed] [Google Scholar]
  79. Hess A., Stiller D., Kaulisch T., Heil P., Scheich H. New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex. J Neurosci. 2000 May 1;20(9):3328–3338. doi: 10.1523/JNEUROSCI.20-09-03328.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Hoffmann E. J., Phelps M. E., Mullani N. A., Higgins C. S., Ter-Pogossian M. M. Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med. 1976 Jun;17(6):493–502. [PubMed] [Google Scholar]
  81. Hoogenraad F. G., Pouwels P. J., Hofman M. B., Reichenbach J. R., Sprenger M., Haacke E. M. Quantitative differentiation between BOLD models in fMRI. Magn Reson Med. 2001 Feb;45(2):233–246. doi: 10.1002/1522-2594(200102)45:2<233::aid-mrm1032>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  82. Hsu E. W., Hedlund L. W., MacFall J. R. Functional MRI of the rat somatosensory cortex: effects of hyperventilation. Magn Reson Med. 1998 Sep;40(3):421–426. doi: 10.1002/mrm.1910400312. [DOI] [PubMed] [Google Scholar]
  83. Hu X., Kim S. G. Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med. 1994 May;31(5):495–503. doi: 10.1002/mrm.1910310505. [DOI] [PubMed] [Google Scholar]
  84. Hu X., Le T. H., Uğurbil K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med. 1997 Jun;37(6):877–884. doi: 10.1002/mrm.1910370612. [DOI] [PubMed] [Google Scholar]
  85. Huang C. M., Buchwald J. S. Interpretation of the vertex short-latency acoustic response: a study of single neurons in the brain stem. Brain Res. 1977 Dec 2;137(2):291–303. doi: 10.1016/0006-8993(77)90340-7. [DOI] [PubMed] [Google Scholar]
  86. Humphrey D. R., Corrie W. S. Properties of pyramidal tract neuron system within a functionally defined subregion of primate motor cortex. J Neurophysiol. 1978 Jan;41(1):216–243. doi: 10.1152/jn.1978.41.1.216. [DOI] [PubMed] [Google Scholar]
  87. Hyde J. S., Biswal B. B., Jesmanowicz A. High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med. 2001 Jul;46(1):114–125. doi: 10.1002/mrm.1166. [DOI] [PubMed] [Google Scholar]
  88. Hyde J. S., Jesmanowicz A., Grist T. M., Froncisz W., Kneeland J. B. Quadrature detection surface coil. Magn Reson Med. 1987 Feb;4(2):179–184. doi: 10.1002/mrm.1910040211. [DOI] [PubMed] [Google Scholar]
  89. Hyder F., Shulman R. G., Rothman D. L. A model for the regulation of cerebral oxygen delivery. J Appl Physiol (1985) 1998 Aug;85(2):554–564. doi: 10.1152/jappl.1998.85.2.554. [DOI] [PubMed] [Google Scholar]
  90. Jezzard P., Rauschecker J. P., Malonek D. An in vivo model for functional MRI in cat visual cortex. Magn Reson Med. 1997 Nov;38(5):699–705. doi: 10.1002/mrm.1910380504. [DOI] [PubMed] [Google Scholar]
  91. Jones M., Berwick J., Johnston D., Mayhew J. Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage. 2001 Jun;13(6 Pt 1):1002–1015. doi: 10.1006/nimg.2001.0808. [DOI] [PubMed] [Google Scholar]
  92. Jueptner M., Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage. 1995 Jun;2(2):148–156. doi: 10.1006/nimg.1995.1017. [DOI] [PubMed] [Google Scholar]
  93. Juergens E., Guettler A., Eckhorn R. Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res. 1999 Nov;129(2):247–259. doi: 10.1007/s002210050895. [DOI] [PubMed] [Google Scholar]
  94. Kaas J. H., Krubitzer L. A., Chino Y. M., Langston A. L., Polley E. H., Blair N. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science. 1990 Apr 13;248(4952):229–231. doi: 10.1126/science.2326637. [DOI] [PubMed] [Google Scholar]
  95. Kadekaro M., Crane A. M., Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A. 1985 Sep;82(17):6010–6013. doi: 10.1073/pnas.82.17.6010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kadekaro M., Vance W. H., Terrell M. L., Gary H., Jr, Eisenberg H. M., Sokoloff L. Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5492–5495. doi: 10.1073/pnas.84.15.5492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kamada K., Pekar J. J., Kanwal J. S. Anatomical and functional imaging of the auditory cortex in awake mustached bats using magnetic resonance technology. Brain Res Brain Res Protoc. 1999 Dec;4(3):351–359. doi: 10.1016/s1385-299x(99)00040-9. [DOI] [PubMed] [Google Scholar]
  98. Kandel A., Buzsáki G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997 Sep 1;17(17):6783–6797. doi: 10.1523/JNEUROSCI.17-17-06783.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Kastner S., De Weerd P., Desimone R., Ungerleider L. G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science. 1998 Oct 2;282(5386):108–111. doi: 10.1126/science.282.5386.108. [DOI] [PubMed] [Google Scholar]
  100. Kastner S., Ungerleider L. G. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci. 2000;23:315–341. doi: 10.1146/annurev.neuro.23.1.315. [DOI] [PubMed] [Google Scholar]
  101. Kennan R. P., Scanley B. E., Gore J. C. Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 1997 Jun;37(6):953–956. doi: 10.1002/mrm.1910370621. [DOI] [PubMed] [Google Scholar]
  102. Kennan R. P., Scanley B. E., Innis R. B., Gore J. C. Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 1998 Dec;40(6):840–846. doi: 10.1002/mrm.1910400609. [DOI] [PubMed] [Google Scholar]
  103. Kennan R. P., Zhong J., Gore J. C. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med. 1994 Jan;31(1):9–21. doi: 10.1002/mrm.1910310103. [DOI] [PubMed] [Google Scholar]
  104. Kety S. S., Schmidt C. F. THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. J Clin Invest. 1948 Jul;27(4):476–483. doi: 10.1172/JCI101994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Kim DS, Duong TQ, Kim SG. Reply to "Can current fMRI techniques reveal the micro-architecture of cortex?". Nat Neurosci. 2000 May;3(5):414–414. doi: 10.1038/74771. [DOI] [PubMed] [Google Scholar]
  106. Kim S. G., Hendrich K., Hu X., Merkle H., Uğurbil K. Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed. 1994 Mar;7(1-2):69–74. doi: 10.1002/nbm.1940070111. [DOI] [PubMed] [Google Scholar]
  107. Kim S. G., Hu X., Adriany G., Uğurbil K. Fast interleaved echo-planar imaging with navigator: high resolution anatomic and functional images at 4 Tesla. Magn Reson Med. 1996 Jun;35(6):895–902. doi: 10.1002/mrm.1910350618. [DOI] [PubMed] [Google Scholar]
  108. Kim S. G., Uğurbil K. Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med. 1997 Jul;38(1):59–65. doi: 10.1002/mrm.1910380110. [DOI] [PubMed] [Google Scholar]
  109. Kocsis B., Bragin A., Buzsáki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci. 1999 Jul 15;19(14):6200–6212. doi: 10.1523/JNEUROSCI.19-14-06200.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Kourtzi Z., Kanwisher N. Representation of perceived object shape by the human lateral occipital complex. Science. 2001 Aug 24;293(5534):1506–1509. doi: 10.1126/science.1061133. [DOI] [PubMed] [Google Scholar]
  111. Krakow K., Allen P. J., Symms M. R., Lemieux L., Josephs O., Fish D. R. EEG recording during fMRI experiments: image quality. Hum Brain Mapp. 2000 May;10(1):10–15. doi: 10.1002/(SICI)1097-0193(200005)10:1&#x0003c;10::AID-HBM20&#x0003e;3.0.CO;2-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Krakow K., Woermann F. G., Symms M. R., Allen P. J., Lemieux L., Barker G. J., Duncan J. S., Fish D. R. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain. 1999 Sep;122(Pt 9):1679–1688. doi: 10.1093/brain/122.9.1679. [DOI] [PubMed] [Google Scholar]
  113. Kreiman G., Koch C., Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci. 2000 Sep;3(9):946–953. doi: 10.1038/78868. [DOI] [PubMed] [Google Scholar]
  114. Kreiman G., Koch C., Fried I. Imagery neurons in the human brain. Nature. 2000 Nov 16;408(6810):357–361. doi: 10.1038/35042575. [DOI] [PubMed] [Google Scholar]
  115. Krüger G., Kleinschmidt A., Frahm J. Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex. Magn Reson Med. 1996 Jun;35(6):797–800. doi: 10.1002/mrm.1910350602. [DOI] [PubMed] [Google Scholar]
  116. Kwong K. K., Belliveau J. W., Chesler D. A., Goldberg I. E., Weisskoff R. M., Poncelet B. P., Kennedy D. N., Hoppel B. E., Cohen M. S., Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675–5679. doi: 10.1073/pnas.89.12.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Lahti K. M., Ferris C. F., Li F., Sotak C. H., King J. A. Imaging brain activity in conscious animals using functional MRI. J Neurosci Methods. 1998 Jul 1;82(1):75–83. doi: 10.1016/s0165-0270(98)00037-5. [DOI] [PubMed] [Google Scholar]
  118. Laurent G., Davidowitz H. Encoding of olfactory information with oscillating neural assemblies. Science. 1994 Sep 23;265(5180):1872–1875. doi: 10.1126/science.265.5180.1872. [DOI] [PubMed] [Google Scholar]
  119. Laurent G., Stopfer M., Friedrich R. W., Rabinovich M. I., Volkovskii A., Abarbanel H. D. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci. 2001;24:263–297. doi: 10.1146/annurev.neuro.24.1.263. [DOI] [PubMed] [Google Scholar]
  120. Le Bas J. F., Hassler M., Reutenauer H., Decorps M., Camuset J. P., Crouzet G., Benabid A. L. IRM du rachis cervical. Réalisation d'une antenne de surface. Résultats techniques et cliniques. J Radiol. 1987 Oct;68(10):579–586. [PubMed] [Google Scholar]
  121. Lee S. P., Duong T. Q., Yang G., Iadecola C., Kim S. G. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med. 2001 May;45(5):791–800. doi: 10.1002/mrm.1107. [DOI] [PubMed] [Google Scholar]
  122. Legatt A. D., Arezzo J., Vaughan H. G., Jr Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials. J Neurosci Methods. 1980 Apr;2(2):203–217. doi: 10.1016/0165-0270(80)90061-8. [DOI] [PubMed] [Google Scholar]
  123. Lindauer U., Royl G., Leithner C., Kühl M., Gold L., Gethmann J., Kohl-Bareis M., Villringer A., Dirnagl U. No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. Neuroimage. 2001 Jun;13(6 Pt 1):988–1001. doi: 10.1006/nimg.2000.0709. [DOI] [PubMed] [Google Scholar]
  124. Logothetis N. K., Guggenberger H., Peled S., Pauls J. Functional imaging of the monkey brain. Nat Neurosci. 1999 Jun;2(6):555–562. doi: 10.1038/9210. [DOI] [PubMed] [Google Scholar]
  125. Logothetis N. K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001 Jul 12;412(6843):150–157. doi: 10.1038/35084005. [DOI] [PubMed] [Google Scholar]
  126. Logothetis N. Can current fMRI techniques reveal the micro-architecture of cortex? Nat Neurosci. 2000 May;3(5):413–414. doi: 10.1038/74768. [DOI] [PubMed] [Google Scholar]
  127. Logothetis Nikos, Merkle Hellmut, Augath Mark, Trinath Torsten, Ugurbil Kâmil. Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron. 2002 Jul 18;35(2):227–242. doi: 10.1016/s0896-6273(02)00775-4. [DOI] [PubMed] [Google Scholar]
  128. Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
  129. Luo Y., de Graaf R. A., DelaBarre L., Tannús A., Garwood M. BISTRO: an outer-volume suppression method that tolerates RF field inhomogeneity. Magn Reson Med. 2001 Jun;45(6):1095–1102. doi: 10.1002/mrm.1144. [DOI] [PubMed] [Google Scholar]
  130. López-Villegas D., Kimura H., Tunlayadechanont S., Lenkinski R. E. High spatial resolution MRI and proton MRS of human frontal cortex. NMR Biomed. 1996 Oct;9(7):297–304. doi: 10.1002/(SICI)1099-1492(199610)9:7<297::AID-NBM433>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  131. MARSAN C. A. ELECTRICAL ACTIVITY OF THE BRAIN: SLOW WAVES AND NEURONAL ACTIVITY. Isr J Med Sci. 1965 Jan;1:104–117. [PubMed] [Google Scholar]
  132. Magistretti P. J., Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1155–1163. doi: 10.1098/rstb.1999.0471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Magistretti P. J., Pellerin L., Rothman D. L., Shulman R. G. Energy on demand. Science. 1999 Jan 22;283(5401):496–497. doi: 10.1126/science.283.5401.496. [DOI] [PubMed] [Google Scholar]
  134. Malonek D., Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996 Apr 26;272(5261):551–554. doi: 10.1126/science.272.5261.551. [DOI] [PubMed] [Google Scholar]
  135. Mandeville J. B., Jenkins B. G., Kosofsky B. E., Moskowitz M. A., Rosen B. R., Marota J. J. Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med. 2001 Mar;45(3):443–447. doi: 10.1002/1522-2594(200103)45:3<443::aid-mrm1058>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  136. Mandeville J. B., Marota J. J., Ayata C., Moskowitz M. A., Weisskoff R. M., Rosen B. R. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation. Magn Reson Med. 1999 Nov;42(5):944–951. doi: 10.1002/(sici)1522-2594(199911)42:5<944::aid-mrm15>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  137. Mandeville J. B., Marota J. J., Ayata C., Zaharchuk G., Moskowitz M. A., Rosen B. R., Weisskoff R. M. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab. 1999 Jun;19(6):679–689. doi: 10.1097/00004647-199906000-00012. [DOI] [PubMed] [Google Scholar]
  138. Marota J. J., Ayata C., Moskowitz M. A., Weisskoff R. M., Rosen B. R., Mandeville J. B. Investigation of the early response to rat forepaw stimulation. Magn Reson Med. 1999 Feb;41(2):247–252. doi: 10.1002/(sici)1522-2594(199902)41:2<247::aid-mrm6>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  139. Martin E., Joeri P., Loenneker T., Ekatodramis D., Vitacco D., Hennig J., Marcar V. L. Visual processing in infants and children studied using functional MRI. Pediatr Res. 1999 Aug;46(2):135–140. doi: 10.1203/00006450-199908000-00001. [DOI] [PubMed] [Google Scholar]
  140. Martin K. A. The Wellcome Prize lecture. From single cells to simple circuits in the cerebral cortex. Q J Exp Physiol. 1988 Sep;73(5):637–702. doi: 10.1113/expphysiol.1988.sp003190. [DOI] [PubMed] [Google Scholar]
  141. Mathiesen C., Caesar K., Akgören N., Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol. 1998 Oct 15;512(Pt 2):555–566. doi: 10.1111/j.1469-7793.1998.555be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Mathiesen C., Caesar K., Lauritzen M. Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol. 2000 Feb 15;523(Pt 1):235–246. doi: 10.1111/j.1469-7793.2000.t01-1-00235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Maunsell J. H., van Essen D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci. 1983 Dec;3(12):2563–2586. doi: 10.1523/JNEUROSCI.03-12-02563.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Mayhew J., Johnston D., Martindale J., Jones M., Berwick J., Zheng Y. Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex. Neuroimage. 2001 Jun;13(6 Pt 1):975–987. doi: 10.1006/nimg.2001.0807. [DOI] [PubMed] [Google Scholar]
  145. McAdams C. J., Maunsell J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 1;19(1):431–441. doi: 10.1523/JNEUROSCI.19-01-00431.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. McArdle C. B., Crofford M. J., Mirfakhraee M., Amparo E. G., Calhoun J. S. Surface coil MR of spinal trauma: preliminary experience. AJNR Am J Neuroradiol. 1986 Sep-Oct;7(5):885–893. [PMC free article] [PubMed] [Google Scholar]
  147. Menon R. S., Ogawa S., Hu X., Strupp J. P., Anderson P., Uğurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995 Mar;33(3):453–459. doi: 10.1002/mrm.1910330323. [DOI] [PubMed] [Google Scholar]
  148. Menon R. S., Ogawa S., Tank D. W., Uğurbil K. Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med. 1993 Sep;30(3):380–386. doi: 10.1002/mrm.1910300317. [DOI] [PubMed] [Google Scholar]
  149. Menon V., Ford J. M., Lim K. O., Glover G. H., Pfefferbaum A. Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport. 1997 Sep 29;8(14):3029–3037. doi: 10.1097/00001756-199709290-00007. [DOI] [PubMed] [Google Scholar]
  150. Mitzdorf U. Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci. 1987 Mar;33(1-2):33–59. doi: 10.3109/00207458708985928. [DOI] [PubMed] [Google Scholar]
  151. Mountcastle V. B., Steinmetz M. A., Romo R. Frequency discrimination in the sense of flutter: psychophysical measurements correlated with postcentral events in behaving monkeys. J Neurosci. 1990 Sep;10(9):3032–3044. doi: 10.1523/JNEUROSCI.10-09-03032.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Nakahara Kiyoshi, Hayashi Toshihiro, Konishi Seiki, Miyashita Yasushi. Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science. 2002 Feb 22;295(5559):1532–1536. doi: 10.1126/science.1067653. [DOI] [PubMed] [Google Scholar]
  153. Nelson P. G. Interaction between spinal motoneurons of the cat. J Neurophysiol. 1966 Mar;29(2):275–287. doi: 10.1152/jn.1966.29.2.275. [DOI] [PubMed] [Google Scholar]
  154. Nicholson C., Llinas R. Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol. 1971 Jul;34(4):509–531. doi: 10.1152/jn.1971.34.4.509. [DOI] [PubMed] [Google Scholar]
  155. Nudo R. J., Masterton R. B. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol. 1986 Mar 22;245(4):553–565. doi: 10.1002/cne.902450410. [DOI] [PubMed] [Google Scholar]
  156. Obata S., Obata J., Das A., Gilbert C. D. Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions. Cereb Cortex. 1999 Apr-May;9(3):238–248. doi: 10.1093/cercor/9.3.238. [DOI] [PubMed] [Google Scholar]
  157. Ogawa S., Lee T. M., Kay A. R., Tank D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868–9872. doi: 10.1073/pnas.87.24.9868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Ogawa S., Lee T. M. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med. 1990 Oct;16(1):9–18. doi: 10.1002/mrm.1910160103. [DOI] [PubMed] [Google Scholar]
  159. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  160. Ogawa S., Menon R. S., Kim S. G., Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct. 1998;27:447–474. doi: 10.1146/annurev.biophys.27.1.447. [DOI] [PubMed] [Google Scholar]
  161. Ogawa S., Menon R. S., Tank D. W., Kim S. G., Merkle H., Ellermann J. M., Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993 Mar;64(3):803–812. doi: 10.1016/S0006-3495(93)81441-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951–5955. doi: 10.1073/pnas.89.13.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Pan J. W., Stein D. T., Telang F., Lee J. H., Shen J., Brown P., Cline G., Mason G. F., Shulman G. I., Rothman D. L. Spectroscopic imaging of glutamate C4 turnover in human brain. Magn Reson Med. 2000 Nov;44(5):673–679. doi: 10.1002/1522-2594(200011)44:5<673::aid-mrm3>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  164. Pauling L., Coryell C. D. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936 Apr;22(4):210–216. doi: 10.1073/pnas.22.4.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Pedemonte M., Barrenechea C., Nuñez A., Gambini J. P., García-Austt E. Membrane and circuit properties of lateral septum neurons: relationships with hippocampal rhythms. Brain Res. 1998 Jul 27;800(1):145–153. doi: 10.1016/s0006-8993(98)00517-4. [DOI] [PubMed] [Google Scholar]
  166. Pfeuffer Josef, Van de Moortele Pierre-Francois, Ugurbil Kamil, Hu Xiaoping, Glover Gary H. Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med. 2002 Feb;47(2):344–353. doi: 10.1002/mrm.10065. [DOI] [PubMed] [Google Scholar]
  167. Phelps M. E., Hoffman E. J., Mullani N. A., Ter-Pogossian M. M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975 Mar;16(3):210–224. [PubMed] [Google Scholar]
  168. Polonsky A., Blake R., Braun J., Heeger D. J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci. 2000 Nov;3(11):1153–1159. doi: 10.1038/80676. [DOI] [PubMed] [Google Scholar]
  169. RALL W. Electrophysiology of a dendritic neuron model. Biophys J. 1962 Mar;2(2 Pt 2):145–167. doi: 10.1016/s0006-3495(62)86953-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Raichle M. E., Grubb R. L., Jr, Eichling J. O., Ter-Pogossian M. M. Measurement of brain oxygen utilization with radioactive oxygen-15: experimental verification. J Appl Physiol. 1976 Apr;40(4):638–640. doi: 10.1152/jappl.1976.40.4.638. [DOI] [PubMed] [Google Scholar]
  171. Rainer G., Augath M., Trinath T., Logothetis N. K. Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey. Curr Biol. 2001 Jun 5;11(11):846–854. doi: 10.1016/s0960-9822(01)00242-1. [DOI] [PubMed] [Google Scholar]
  172. Raisman G. The connexions of the septum. Brain. 1966 Jun;89(2):317–348. doi: 10.1093/brain/89.2.317. [DOI] [PubMed] [Google Scholar]
  173. Recanzone G. H., Merzenich M. M., Schreiner C. E. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J Neurophysiol. 1992 May;67(5):1071–1091. doi: 10.1152/jn.1992.67.5.1071. [DOI] [PubMed] [Google Scholar]
  174. Rees G., Friston K., Koch C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci. 2000 Jul;3(7):716–723. doi: 10.1038/76673. [DOI] [PubMed] [Google Scholar]
  175. Ress D., Backus B. T., Heeger D. J. Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci. 2000 Sep;3(9):940–945. doi: 10.1038/78856. [DOI] [PubMed] [Google Scholar]
  176. Roemer P. B., Edelstein W. A., Hayes C. E., Souza S. P., Mueller O. M. The NMR phased array. Magn Reson Med. 1990 Nov;16(2):192–225. doi: 10.1002/mrm.1910160203. [DOI] [PubMed] [Google Scholar]
  177. Romo R., Salinas E. Sensing and deciding in the somatosensory system. Curr Opin Neurobiol. 1999 Aug;9(4):487–493. doi: 10.1016/S0959-4388(99)80073-7. [DOI] [PubMed] [Google Scholar]
  178. Rosen B. R., Belliveau J. W., Aronen H. J., Kennedy D., Buchbinder B. R., Fischman A., Gruber M., Glas J., Weisskoff R. M., Cohen M. S. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med. 1991 Dec;22(2):293–303. doi: 10.1002/mrm.1910220227. [DOI] [PubMed] [Google Scholar]
  179. Rothman D. L., Sibson N. R., Hyder F., Shen J., Behar K. L., Shulman R. G. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1165–1177. doi: 10.1098/rstb.1999.0472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Roy C. S., Sherrington C. S. On the Regulation of the Blood-supply of the Brain. J Physiol. 1890 Jan;11(1-2):85–158.17. doi: 10.1113/jphysiol.1890.sp000321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Rudin M. MR microscopy on rats in vivo at 4.7 T using surface coils. Magn Reson Med. 1987 Nov;5(5):443–448. doi: 10.1002/mrm.1910050505. [DOI] [PubMed] [Google Scholar]
  182. Schiller P. H., Finlay B. L., Volman S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol. 1976 Nov;39(6):1288–1319. doi: 10.1152/jn.1976.39.6.1288. [DOI] [PubMed] [Google Scholar]
  183. Segebarth C., Belle V., Delon C., Massarelli R., Decety J., Le Bas J. F., Décorps M., Benabid A. L. Functional MRI of the human brain: predominance of signals from extracerebral veins. Neuroreport. 1994 Mar 21;5(7):813–816. doi: 10.1097/00001756-199403000-00019. [DOI] [PubMed] [Google Scholar]
  184. Sereno M. I., Dale A. M., Reppas J. B., Kwong K. K., Belliveau J. W., Brady T. J., Rosen B. R., Tootell R. B. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995 May 12;268(5212):889–893. doi: 10.1126/science.7754376. [DOI] [PubMed] [Google Scholar]
  185. Sereno Margaret E., Trinath Torsten, Augath Mark, Logothetis Nikos K. Three-dimensional shape representation in monkey cortex. Neuron. 2002 Feb 14;33(4):635–652. doi: 10.1016/s0896-6273(02)00598-6. [DOI] [PubMed] [Google Scholar]
  186. Shulman G. L., Corbetta M., Buckner R. L., Raichle M. E., Fiez J. A., Miezin F. M., Petersen S. E. Top-down modulation of early sensory cortex. Cereb Cortex. 1997 Apr-May;7(3):193–206. doi: 10.1093/cercor/7.3.193. [DOI] [PubMed] [Google Scholar]
  187. Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):316–321. doi: 10.1073/pnas.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Silva L. R., Amitai Y., Connors B. W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science. 1991 Jan 25;251(4992):432–435. doi: 10.1126/science.1824881. [DOI] [PubMed] [Google Scholar]
  189. Silver X., Ni W. X., Mercer E. V., Beck B. L., Bossart E. L., Inglis B., Mareci T. H. In vivo 1H magnetic resonance imaging and spectroscopy of the rat spinal cord using an inductively-coupled chronically implanted RF coil. Magn Reson Med. 2001 Dec;46(6):1216–1222. doi: 10.1002/mrm.1319. [DOI] [PubMed] [Google Scholar]
  190. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  191. Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977 Jul;29(1):13–26. doi: 10.1111/j.1471-4159.1977.tb03919.x. [DOI] [PubMed] [Google Scholar]
  192. Sokoloff L. Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc. 1981 Jun;40(8):2311–2316. [PubMed] [Google Scholar]
  193. Steele G. E., Weller R. E., Cusick C. G. Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. J Comp Neurol. 1991 Apr 15;306(3):495–520. doi: 10.1002/cne.903060312. [DOI] [PubMed] [Google Scholar]
  194. Steriade M., Hobson J. Neuronal activity during the sleep-waking cycle. Prog Neurobiol. 1976;6(3-4):155–376. [PubMed] [Google Scholar]
  195. Steriade M., McCormick D. A., Sejnowski T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262(5134):679–685. doi: 10.1126/science.8235588. [DOI] [PubMed] [Google Scholar]
  196. Summers R. M., Hedlund L. W., Cofer G. P., Gottsman M. B., Manibo J. F., Johnson G. A. MR microscopy of the rat carotid artery after balloon injury by using an implanted imaging coil. Magn Reson Med. 1995 Jun;33(6):785–789. doi: 10.1002/mrm.1910330607. [DOI] [PubMed] [Google Scholar]
  197. Szentágothai J. The Ferrier Lecture, 1977. The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond B Biol Sci. 1978 May 16;201(1144):219–248. doi: 10.1098/rspb.1978.0043. [DOI] [PubMed] [Google Scholar]
  198. Takahashi S., Driscoll B. F., Law M. J., Sokoloff L. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4616–4620. doi: 10.1073/pnas.92.10.4616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Ter-Pogossian M. M., Eichling J. O., Davis D. O., Welch M. J., Metzger J. M. The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15. Radiology. 1969 Jul;93(1):31–40. doi: 10.1148/93.1.31. [DOI] [PubMed] [Google Scholar]
  200. Ter-Pogossian M. M., Eichling J. O., Davis D. O., Welch M. J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970 Feb;49(2):381–391. doi: 10.1172/JCI106247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Ter-Pogossian M. M., Phelps M. E., Hoffman E. J., Mullani N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975 Jan;114(1):89–98. doi: 10.1148/114.1.89. [DOI] [PubMed] [Google Scholar]
  202. Tolias A. S., Smirnakis S. M., Augath M. A., Trinath T., Logothetis N. K. Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci. 2001 Nov 1;21(21):8594–8601. doi: 10.1523/JNEUROSCI.21-21-08594.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Tong F., Nakayama K., Vaughan J. T., Kanwisher N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron. 1998 Oct;21(4):753–759. doi: 10.1016/s0896-6273(00)80592-9. [DOI] [PubMed] [Google Scholar]
  204. Tootell R. B., Reppas J. B., Dale A. M., Look R. B., Sereno M. I., Malach R., Brady T. J., Rosen B. R. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature. 1995 May 11;375(6527):139–141. doi: 10.1038/375139a0. [DOI] [PubMed] [Google Scholar]
  205. Towe A. L., Harding G. W. Extracellular microelectrode sampling bias. Exp Neurol. 1970 Nov;29(2):366–381. doi: 10.1016/0014-4886(70)90065-8. [DOI] [PubMed] [Google Scholar]
  206. Tuor U. I., Malisza K., Foniok T., Papadimitropoulos R., Jarmasz M., Somorjai R., Kozlowski P. Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain. 2000 Sep;87(3):315–324. doi: 10.1016/S0304-3959(00)00293-1. [DOI] [PubMed] [Google Scholar]
  207. Turner R., Le Bihan D., Moonen C. T., Despres D., Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991 Nov;22(1):159–166. doi: 10.1002/mrm.1910220117. [DOI] [PubMed] [Google Scholar]
  208. Ungerleider L. G., Desimone R. Cortical connections of visual area MT in the macaque. J Comp Neurol. 1986 Jun 8;248(2):190–222. doi: 10.1002/cne.902480204. [DOI] [PubMed] [Google Scholar]
  209. Uğurbil K., Garwood M., Ellermann J., Hendrich K., Hinke R., Hu X., Kim S. G., Menon R., Merkle H., Ogawa S. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q. 1993 Dec;9(4):259–277. [PubMed] [Google Scholar]
  210. Vanduffel W., Fize D., Mandeville J. B., Nelissen K., Van Hecke P., Rosen B. R., Tootell R. B., Orban G. A. Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron. 2001 Nov 20;32(4):565–577. doi: 10.1016/s0896-6273(01)00502-5. [DOI] [PubMed] [Google Scholar]
  211. Vanzetta I., Grinvald A. Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging. Neuroimage. 2001 Jun;13(6 Pt 1):959–967. doi: 10.1006/nimg.2001.0843. [DOI] [PubMed] [Google Scholar]
  212. Vanzetta I., Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science. 1999 Nov 19;286(5444):1555–1558. doi: 10.1126/science.286.5444.1555. [DOI] [PubMed] [Google Scholar]
  213. Walker P. M., Robin-Lherbier B., Escanyé J. M., Robert J. Signal-to-noise improvement in mid-field MRI surface coils: a degree in plumbing? Magn Reson Imaging. 1991;9(6):927–931. doi: 10.1016/0730-725x(91)90537-v. [DOI] [PubMed] [Google Scholar]
  214. Wehr M., Laurent G. Relationship between afferent and central temporal patterns in the locust olfactory system. J Neurosci. 1999 Jan 1;19(1):381–390. doi: 10.1523/JNEUROSCI.19-01-00381.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Weisskoff R. M., Zuo C. S., Boxerman J. L., Rosen B. R. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med. 1994 Jun;31(6):601–610. doi: 10.1002/mrm.1910310605. [DOI] [PubMed] [Google Scholar]
  216. Wyrwicz A. M., Chen N., Li L., Weiss C., Disterhoft J. F. fMRI of visual system activation in the conscious rabbit. Magn Reson Med. 2000 Sep;44(3):474–478. doi: 10.1002/1522-2594(200009)44:3<474::aid-mrm19>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  217. Yacoub E., Hu X. Detection of the early negative response in fMRI at 1.5 Tesla. Magn Reson Med. 1999 Jun;41(6):1088–1092. doi: 10.1002/(sici)1522-2594(199906)41:6<1088::aid-mrm3>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  218. Zhang Z., Andersen A. H., Avison M. J., Gerhardt G. A., Gash D. M. Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res. 2000 Jan 10;852(2):290–296. doi: 10.1016/s0006-8993(99)02243-x. [DOI] [PubMed] [Google Scholar]
  219. Zhong J., Kennan R. P., Fulbright R. K., Gore J. C. Quantification of intravascular and extravascular contributions to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn Reson Med. 1998 Oct;40(4):526–536. doi: 10.1002/mrm.1910400405. [DOI] [PubMed] [Google Scholar]
  220. van Zijl P. C., Eleff S. M., Ulatowski J. A., Oja J. M., Uluğ A. M., Traystman R. J., Kauppinen R. A. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med. 1998 Feb;4(2):159–167. doi: 10.1038/nm0298-159. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES