Abstract
When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed.
Full Text
The Full Text of this article is available as a PDF (170.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlbrink R., Haumann M., Cherepanov D., Bögershausen O., Mulkidjanian A., Junge W. Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor. Biochemistry. 1998 Jan 27;37(4):1131–1142. doi: 10.1021/bi9719152. [DOI] [PubMed] [Google Scholar]
- Ananyev G. M., Sakiyan I., Diner B. A., Dismukes G. C. A functional role for tyrosine-D in assembly of the inorganic core of the water oxidase complex of photosystem II and the kinetics of water oxidation. Biochemistry. 2002 Jan 22;41(3):974–980. doi: 10.1021/bi011528z. [DOI] [PubMed] [Google Scholar]
- Ananyev G. M., Zaltsman L., Vasko C., Dismukes G. C. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):52–68. doi: 10.1016/s0005-2728(00)00215-2. [DOI] [PubMed] [Google Scholar]
- Babcock G. T., Barry B. A., Debus R. J., Hoganson C. W., Atamian M., McIntosh L., Sithole I., Yocum C. F. Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. Biochemistry. 1989 Dec 12;28(25):9557–9565. doi: 10.1021/bi00451a001. [DOI] [PubMed] [Google Scholar]
- Carrell G., Tyryshkin M., Dismukes C. An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J Biol Inorg Chem. 2001 Nov 8;7(1-2):2–22. doi: 10.1007/s00775-001-0305-3. [DOI] [PubMed] [Google Scholar]
- Clausen J., Winkler S., Hays A. M., Hundelt M., Debus R. J., Junge W. Photosynthetic water oxidation in Synechocystis sp. PCC6803: mutations D1-E189K, R and Q are without influence on electron transfer at the donor side of photosystem II. Biochim Biophys Acta. 2001 Nov 1;1506(3):224–235. doi: 10.1016/s0005-2728(01)00217-1. [DOI] [PubMed] [Google Scholar]
- Conjeaud H., Mathis P. The effects of pH on the reductions kinetics of P-680 in Tris-treated chloroplasts. Biochim Biophys Acta. 1980 May 9;590(3):353–359. doi: 10.1016/0005-2728(80)90206-6. [DOI] [PubMed] [Google Scholar]
- Dau H., Iuzzolino L., Dittmer J. The tetra-manganese complex of photosystem II during its redox cycle - X-ray absorption results and mechanistic implications. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):24–39. doi: 10.1016/s0005-2728(00)00230-9. [DOI] [PubMed] [Google Scholar]
- Debus R. J. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):164–186. doi: 10.1016/s0005-2728(00)00221-8. [DOI] [PubMed] [Google Scholar]
- Diner B. A. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):147–163. doi: 10.1016/s0005-2728(00)00220-6. [DOI] [PubMed] [Google Scholar]
- Diner B. A., Schlodder E., Nixon P. J., Coleman W. J., Rappaport F., Lavergne J., Vermaas W. F., Chisholm D. A. Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry. 2001 Aug 7;40(31):9265–9281. doi: 10.1021/bi010121r. [DOI] [PubMed] [Google Scholar]
- Gilchrist M. L., Jr, Ball J. A., Randall D. W., Britt R. D. Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9545–9549. doi: 10.1073/pnas.92.21.9545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haumann M., Hundelt M., Jahns P., Chroni S., Bögershausen O., Ghanotakis D., Junge W. Proton release from water oxidation by photosystem II: similar stoichiometries are stabilized in thylakoids and PSII core particles by glycerol. FEBS Lett. 1997 Jun 30;410(2-3):243–248. doi: 10.1016/s0014-5793(97)00596-6. [DOI] [PubMed] [Google Scholar]
- Haumann M., Junge W. Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production. Biochemistry. 1994 Feb 1;33(4):864–872. doi: 10.1021/bi00170a003. [DOI] [PubMed] [Google Scholar]
- Haumann M, Junge W. Photosynthetic water oxidation: a simplex-scheme of its partial reactions . Biochim Biophys Acta. 1999 Apr 21;1411(1):86–91. doi: 10.1016/s0005-2728(99)00042-0. [DOI] [PubMed] [Google Scholar]
- Hillier W., Wydrzynski T. The affinities for the two substrate water binding sites in the O(2) evolving complex of photosystem II vary independently during S-state turnover. Biochemistry. 2000 Apr 18;39(15):4399–4405. doi: 10.1021/bi992318d. [DOI] [PubMed] [Google Scholar]
- Hoganson C. W., Babcock G. T. Mechanistic aspects of the tyrosyl radical-manganese complex in photosynthetic water oxidation. Met Ions Biol Syst. 2000;37:613–656. [PubMed] [Google Scholar]
- Jeans Chris, Schilstra Maria J., Klug David R. The temperature dependence of P680(+) reduction in oxygen-evolving photosystem II. Biochemistry. 2002 Apr 16;41(15):5015–5023. doi: 10.1021/bi0118862. [DOI] [PubMed] [Google Scholar]
- Page C. C., Moser C. C., Chen X., Dutton P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999 Nov 4;402(6757):47–52. doi: 10.1038/46972. [DOI] [PubMed] [Google Scholar]
- Peloquin J. M., Britt R. D. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):96–111. doi: 10.1016/s0005-2728(00)00219-x. [DOI] [PubMed] [Google Scholar]
- Rappaport F., Lavergne J. Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):246–259. doi: 10.1016/s0005-2728(00)00228-0. [DOI] [PubMed] [Google Scholar]
- Renger G. Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):210–228. doi: 10.1016/s0005-2728(00)00227-9. [DOI] [PubMed] [Google Scholar]
- Rigby S. E., Nugent J. H., O'Malley P. J. The dark stable tyrosine radical of photosystem 2 studied in three species using ENDOR and EPR spectroscopies. Biochemistry. 1994 Feb 22;33(7):1734–1742. doi: 10.1021/bi00173a016. [DOI] [PubMed] [Google Scholar]
- Robblee J. H., Cinco R. M., Yachandra V. K. X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):7–23. doi: 10.1016/s0005-2728(00)00217-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilstra M. J., Rappaport F., Nugent J. H., Barnett C. J., Klug D. R. Proton/hydrogen transfer affects the S-state-dependent microsecond phases of P680+ reduction during water splitting. Biochemistry. 1998 Mar 17;37(11):3974–3981. doi: 10.1021/bi9713815. [DOI] [PubMed] [Google Scholar]
- Siegbahn P. E. Theoretical models for the oxygen radical mechanism of water oxidation and of the water oxidizing complex of photosystem II. Inorg Chem. 2000 Jun 26;39(13):2923–2935. doi: 10.1021/ic9911872. [DOI] [PubMed] [Google Scholar]
- Tommos C., Babcock G. T. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000 May 12;1458(1):199–219. doi: 10.1016/s0005-2728(00)00069-4. [DOI] [PubMed] [Google Scholar]
- Tommos C., Hoganson C. W., Valentin M. D., Lydakis-Simantiris N., Dorlet P., Westphal K., Chu H. A., McCracken J., Babcock G. T. Manganese and tyrosyl radical function in photosynthetic oxygen evolution. Curr Opin Chem Biol. 1998 Apr;2(2):244–252. doi: 10.1016/s1367-5931(98)80066-5. [DOI] [PubMed] [Google Scholar]
- Tommos C., Skalicky J. J., Pilloud D. L., Wand A. J., Dutton P. L. De novo proteins as models of radical enzymes. Biochemistry. 1999 Jul 20;38(29):9495–9507. doi: 10.1021/bi990609g. [DOI] [PubMed] [Google Scholar]
- Un S., Tang X. S., Diner B. A. 245 GHz high-field EPR study of tyrosine-D zero and tyrosine-Z zero in mutants of photosystem II. Biochemistry. 1996 Jan 23;35(3):679–684. doi: 10.1021/bi9523769. [DOI] [PubMed] [Google Scholar]
- Vass I., Styring S. pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry. 1991 Jan 22;30(3):830–839. doi: 10.1021/bi00217a037. [DOI] [PubMed] [Google Scholar]
- Vrettos J. S., Limburg J., Brudvig G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):229–245. doi: 10.1016/s0005-2728(00)00214-0. [DOI] [PubMed] [Google Scholar]
- Wincencjusz H., van Gorkom H. J., Yocum C. F. The photosynthetic oxygen evolving complex requires chloride for its redox state S2-->S3 and S3-->S0 transitions but not for S0-->S1 or S1-->S2 transitions. Biochemistry. 1997 Mar 25;36(12):3663–3670. doi: 10.1021/bi9626719. [DOI] [PubMed] [Google Scholar]
- Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature. 2001 Feb 8;409(6821):739–743. doi: 10.1038/35055589. [DOI] [PubMed] [Google Scholar]