Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Oct 29;357(1426):1369–1420. doi: 10.1098/rstb.2002.1134

Photosystem II and photosynthetic oxidation of water: an overview.

Charilaos Goussias 1, Alain Boussac 1, A William Rutherford 1
PMCID: PMC1693055  PMID: 12437876

Abstract

Conceptually, photosystem II, the oxygen-evolving enzyme, can be divided into two parts: the photochemical part and the catalytic part. The photochemical part contains the ultra-fast and ultra-efficient light-induced charge separation and stabilization steps that occur when light is absorbed by chlorophyll. The catalytic part, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. Our current understanding of the catalytic mechanism is mainly based on spectroscopic studies. Here, we present an overview of the current state of knowledge of photosystem II, attempting to delineate the open questions and the directions of current research.

Full Text

The Full Text of this article is available as a PDF (291.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelroth P., Lindberg K., Andréasson L. E. Studies of Ca2+ binding in spinach photosystem II using 45Ca2+. Biochemistry. 1995 Jul 18;34(28):9021–9027. doi: 10.1021/bi00028a010. [DOI] [PubMed] [Google Scholar]
  2. Ananyev G. M., Zaltsman L., Vasko C., Dismukes G. C. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):52–68. doi: 10.1016/s0005-2728(00)00215-2. [DOI] [PubMed] [Google Scholar]
  3. Aznar Constantino P., Britt R. David. Simulations of the (1)H electron spin echo-electron nuclear double resonance and (2)H electron spin echo envelope modulation spectra of exchangeable hydrogen nuclei coupled to the S(2)-state photosystem II manganese cluster. Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1359–1367. doi: 10.1098/rstb.2002.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barber J., Nield J., Morris E. P., Hankamer B. Subunit positioning in photosystem II revisited. Trends Biochem Sci. 1999 Feb;24(2):43–45. doi: 10.1016/s0968-0004(98)01348-6. [DOI] [PubMed] [Google Scholar]
  5. Boussac A., Sétif P., Rutherford A. W. Inhibition of tyrosine Z photooxidation after formation of the S3 state in Ca(2+)-depleted and Cl(-)-depleted photosystem II. Biochemistry. 1992 Feb 4;31(4):1224–1234. doi: 10.1021/bi00119a036. [DOI] [PubMed] [Google Scholar]
  6. Boussac A., Zimmermann J. L., Rutherford A. W. EPR signals from modified charge accumulation states of the oxygen evolving enzyme in Ca2+-deficient photosystem II. Biochemistry. 1989 Nov 14;28(23):8984–8989. doi: 10.1021/bi00449a005. [DOI] [PubMed] [Google Scholar]
  7. Brudvig G. W., Crabtree R. H. Mechanism for photosynthetic O2 evolution. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4586–4588. doi: 10.1073/pnas.83.13.4586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrell G., Tyryshkin M., Dismukes C. An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J Biol Inorg Chem. 2001 Nov 8;7(1-2):2–22. doi: 10.1007/s00775-001-0305-3. [DOI] [PubMed] [Google Scholar]
  9. Dau H., Iuzzolino L., Dittmer J. The tetra-manganese complex of photosystem II during its redox cycle - X-ray absorption results and mechanistic implications. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):24–39. doi: 10.1016/s0005-2728(00)00230-9. [DOI] [PubMed] [Google Scholar]
  10. Debus R. J. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):164–186. doi: 10.1016/s0005-2728(00)00221-8. [DOI] [PubMed] [Google Scholar]
  11. Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
  12. Dekker J. P., Van Grondelle R. Primary charge separation in Photosystem II. Photosynth Res. 2000;63(3):195–208. doi: 10.1023/A:1006468024245. [DOI] [PubMed] [Google Scholar]
  13. Diner B. A. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):147–163. doi: 10.1016/s0005-2728(00)00220-6. [DOI] [PubMed] [Google Scholar]
  14. Diner B. A., Schlodder E., Nixon P. J., Coleman W. J., Rappaport F., Lavergne J., Vermaas W. F., Chisholm D. A. Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry. 2001 Aug 7;40(31):9265–9281. doi: 10.1021/bi010121r. [DOI] [PubMed] [Google Scholar]
  15. Dismukes G. C., Siderer Y. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci U S A. 1981 Jan;78(1):274–278. doi: 10.1073/pnas.78.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilchrist M. L., Jr, Ball J. A., Randall D. W., Britt R. D. Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9545–9549. doi: 10.1073/pnas.92.21.9545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goussias C., Ioannidis N., Petrouleas V. Low-temperature interactions of NO with the S1 and S2 states of the water-oxidizing complex of photosystem II. A novel Mn-multiline EPR signal derived from the S1 state. Biochemistry. 1997 Jul 29;36(30):9261–9266. doi: 10.1021/bi962899w. [DOI] [PubMed] [Google Scholar]
  18. Hankamer B., Morris E., Nield J., Carne A., Barber J. Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II. FEBS Lett. 2001 Aug 31;504(3):142–151. doi: 10.1016/s0014-5793(01)02766-1. [DOI] [PubMed] [Google Scholar]
  19. Hankamer Ben, Barber James, Boekema Egbert J. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):641–671. doi: 10.1146/annurev.arplant.48.1.641. [DOI] [PubMed] [Google Scholar]
  20. Hanley J., Deligiannakis Y., Pascal A., Faller P., Rutherford A. W. Carotenoid oxidation in photosystem II. Biochemistry. 1999 Jun 29;38(26):8189–8195. doi: 10.1021/bi990633u. [DOI] [PubMed] [Google Scholar]
  21. Hasegawa K., Kusunoki M., Inoue Y., Ono T. A. Simulation of S2-state multiline EPR signal in oriented photosystem II membranes: structural implications for the manganese cluster in an oxygen-evolving complex. Biochemistry. 1998 Jun 30;37(26):9457–9465. doi: 10.1021/bi973057f. [DOI] [PubMed] [Google Scholar]
  22. Haumann M, Junge W. Evidence for impaired hydrogen-bonding of tyrosine YZ in calcium-depleted photosystem II . Biochim Biophys Acta. 1999 Apr 21;1411(1):121–133. doi: 10.1016/s0005-2728(99)00045-6. [DOI] [PubMed] [Google Scholar]
  23. Hillier W., Wydrzynski T. Oxygen ligand exchange at metal sites - implications for the O2 evolving mechanism of photosystem II. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):197–209. doi: 10.1016/s0005-2728(00)00225-5. [DOI] [PubMed] [Google Scholar]
  24. Hoganson C. W., Babcock G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science. 1997 Sep 26;277(5334):1953–1956. doi: 10.1126/science.277.5334.1953. [DOI] [PubMed] [Google Scholar]
  25. Hoganson C. W., Babcock G. T. Mechanistic aspects of the tyrosyl radical-manganese complex in photosynthetic water oxidation. Met Ions Biol Syst. 2000;37:613–656. [PubMed] [Google Scholar]
  26. Ioannidis N., Petrouleas V. Electron paramagnetic resonance signals from the S(3) state of the oxygen-evolving complex. A broadened radical signal induced by low-temperature near-infrared light illumination. Biochemistry. 2000 May 9;39(18):5246–5254. doi: 10.1021/bi000131c. [DOI] [PubMed] [Google Scholar]
  27. Ioannidis N., Schansker G., Barynin V. V., Petrouleas V. Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study. J Biol Inorg Chem. 2000 Jun;5(3):354–363. doi: 10.1007/pl00010664. [DOI] [PubMed] [Google Scholar]
  28. Kok B., Forbush B., McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol. 1970 Jun;11(6):457–475. doi: 10.1111/j.1751-1097.1970.tb06017.x. [DOI] [PubMed] [Google Scholar]
  29. Kuzek D., Pace R. J. Probing the Mn oxidation states in the OEC. Insights from spectroscopic, computational and kinetic data. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):123–137. doi: 10.1016/s0005-2728(00)00218-8. [DOI] [PubMed] [Google Scholar]
  30. Limburg J., Vrettos J. S., Liable-Sands L. M., Rheingold A. L., Crabtree R. H., Brudvig G. W. A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science. 1999 Mar 5;283(5407):1524–1527. doi: 10.1126/science.283.5407.1524. [DOI] [PubMed] [Google Scholar]
  31. Matsukawa T., Mino H., Yoneda D., Kawamori A. Dual-mode EPR study of new signals from the S3-state of oxygen-evolving complex in photosystem II. Biochemistry. 1999 Mar 30;38(13):4072–4077. doi: 10.1021/bi9818570. [DOI] [PubMed] [Google Scholar]
  32. Messinger J., Robblee J. H., Bergmann U., Fernandez C., Glatzel P., Visser H., Cinco R. M., McFarlane K. L., Bellacchio E., Pizarro S. A. Absence of Mn-centered oxidation in the S(2) --> S(3) transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc. 2001 Aug 15;123(32):7804–7820. doi: 10.1021/ja004307+. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Messinger J. Towards understanding the chemistry of photosynthetic oxygen evolution: dynamic structural changes, redox states and substrate water binding of the Mn cluster in photosystem II. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):481–488. doi: 10.1016/s0005-2728(00)00187-0. [DOI] [PubMed] [Google Scholar]
  34. Messinger J., Wacker U., Renger G. Unusual low reactivity of the water oxidase in redox state S3 toward exogenous reductants. Analysis of the NH2OH- and NH2NH2-induced modifications of flash-induced oxygen evolution in isolated spinach thylakoids. Biochemistry. 1991 Aug 6;30(31):7852–7862. doi: 10.1021/bi00245a027. [DOI] [PubMed] [Google Scholar]
  35. Pecoraro V. L., Hsieh W. Y. The use of model complexes to elucidate the structure and function of manganese redox enzymes. Met Ions Biol Syst. 2000;37:429–504. [PubMed] [Google Scholar]
  36. Peloquin J. M., Britt R. D. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):96–111. doi: 10.1016/s0005-2728(00)00219-x. [DOI] [PubMed] [Google Scholar]
  37. Rappaport F., Lavergne J. Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):246–259. doi: 10.1016/s0005-2728(00)00228-0. [DOI] [PubMed] [Google Scholar]
  38. Renger G., Hanssum B. Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach. FEBS Lett. 1992 Mar 24;299(1):28–32. doi: 10.1016/0014-5793(92)80092-u. [DOI] [PubMed] [Google Scholar]
  39. Renger G. Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):210–228. doi: 10.1016/s0005-2728(00)00227-9. [DOI] [PubMed] [Google Scholar]
  40. Rhee K. H., Morris E. P., Barber J., Kühlbrandt W. Three-dimensional structure of the plant photosystem II reaction centre at 8 A resolution. Nature. 1998 Nov 19;396(6708):283–286. doi: 10.1038/24421. [DOI] [PubMed] [Google Scholar]
  41. Robblee J. H., Cinco R. M., Yachandra V. K. X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):7–23. doi: 10.1016/s0005-2728(00)00217-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rutherford A. W. Photosystem II, the water-splitting enzyme. Trends Biochem Sci. 1989 Jun;14(6):227–232. doi: 10.1016/0968-0004(89)90032-7. [DOI] [PubMed] [Google Scholar]
  43. Sarrou J., Ioannidis N., Deligiannakis Y., Petrouleas V. A Mn(II)-Mn(III) EPR signal arises from the interaction of NO with the S1 state of the water-oxidizing complex of photosystem II. Biochemistry. 1998 Mar 17;37(11):3581–3587. doi: 10.1021/bi972828c. [DOI] [PubMed] [Google Scholar]
  44. Schansker Gert, Goussias Charilaos, Petrouleas Vasili, Rutherford A. William. Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S(-2) state. Biochemistry. 2002 Mar 5;41(9):3057–3064. doi: 10.1021/bi015903z. [DOI] [PubMed] [Google Scholar]
  45. Schubert W. D., Klukas O., Saenger W., Witt H. T., Fromme P., Krauss N. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol. 1998 Jul 10;280(2):297–314. doi: 10.1006/jmbi.1998.1824. [DOI] [PubMed] [Google Scholar]
  46. Shen J. R., Qian M., Inoue Y., Burnap R. L. Functional characterization of Synechocystis sp. PCC 6803 delta psbU and delta psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry. 1998 Feb 10;37(6):1551–1558. doi: 10.1021/bi971676i. [DOI] [PubMed] [Google Scholar]
  47. Stewart D. H., Brudvig G. W. Cytochrome b559 of photosystem II. Biochim Biophys Acta. 1998 Oct 5;1367(1-3):63–87. doi: 10.1016/s0005-2728(98)00139-x. [DOI] [PubMed] [Google Scholar]
  48. Tommos C., Babcock G. T. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000 May 12;1458(1):199–219. doi: 10.1016/s0005-2728(00)00069-4. [DOI] [PubMed] [Google Scholar]
  49. Vermaas W. F. Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res. 1994;41:285–294. [PubMed] [Google Scholar]
  50. Vrettos J. S., Limburg J., Brudvig G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):229–245. doi: 10.1016/s0005-2728(00)00214-0. [DOI] [PubMed] [Google Scholar]
  51. Vrettos John S., Brudvig Gary W. Water oxidation chemistry of photosystem II. Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1395-404; discussion 1404-5, 1419-20. doi: 10.1098/rstb.2002.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wincencjusz H., Yocum C. F., van Gorkom H. J. Activating anions that replace Cl- in the O2-evolving complex of photosystem II slow the kinetics of the terminal step in water oxidation and destabilize the S2 and S3 states. Biochemistry. 1999 Mar 23;38(12):3719–3725. doi: 10.1021/bi982295n. [DOI] [PubMed] [Google Scholar]
  53. Yachandra Vittal K., Sauer Kenneth, Klein Melvin P. Manganese Cluster in Photosynthesis: Where Plants Oxidize Water to Dioxygen. Chem Rev. 1996 Nov 7;96(7):2927–2950. doi: 10.1021/cr950052k. [DOI] [PubMed] [Google Scholar]
  54. Yachandra Vittal K. Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy. Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1347-57; discussion 1357-8, 1367. doi: 10.1098/rstb.2002.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zheng Ming, Dismukes G. Charles. Orbital Configuration of the Valence Electrons, Ligand Field Symmetry, and Manganese Oxidation States of the Photosynthetic Water Oxidizing Complex: Analysis of the S(2) State Multiline EPR Signals. Inorg Chem. 1996 May 22;35(11):3307–3319. doi: 10.1021/ic9512340. [DOI] [PubMed] [Google Scholar]
  56. Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature. 2001 Feb 8;409(6821):739–743. doi: 10.1038/35055589. [DOI] [PubMed] [Google Scholar]
  57. van Vliet P., Rutherford A. W. Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance. Biochemistry. 1996 Feb 13;35(6):1829–1839. doi: 10.1021/bi9514471. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES