Abstract
Traditional stereo grouping models have focused on the problem of stereo correspondence between monocular inputs. Recent physiological data revealed that the disparity selective V2 cells increase their responses when (random-dot stereograms) stimuli within their receptive fields are at or near the boundary of a depth surface. Such highlights to depth (non-luminance) edges are seemingly not computationally required for the correspondence problem. Computationally, these highlights make the boundaries of a depth surface more salient, serving pre-attentive segmentation (between depth planes) and attracting visual attention. In special cases, they enable the psychophysically observed perceptual pop-out of a target from a background of visually identical distractors at a different depth. To achieve the highlights, mutual inhibition between disparity selective cells that are tuned to the same or similar depths is required. However, such mutual inhibition would impede the computation for the correspondence problem, which requires mutual excitation between the same cells. In this work, I introduce a computational model that, I believe, is the first to address both stereo correspondence and pre-attentive stereo segmentation. The computational mechanisms in the model are based on intracortical interactions in V2. I will demonstrate that the model captures the following physiological and psychophysical phenomena: (i) depth-edge highlighting; (ii) disparity capture; (iii) pop-out; and (iv) transparency.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakin J. S., Nakayama K., Gilbert C. D. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. J Neurosci. 2000 Nov 1;20(21):8188–8198. doi: 10.1523/JNEUROSCI.20-21-08188.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow H. B., Blakemore C., Pettigrew J. D. The neural mechanism of binocular depth discrimination. J Physiol. 1967 Nov;193(2):327–342. doi: 10.1113/jphysiol.1967.sp008360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cumming B. G., Parker A. J. Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the Macaque. J Neurosci. 2000 Jun 15;20(12):4758–4767. doi: 10.1523/JNEUROSCI.20-12-04758.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert C. D., Wiesel T. N. Clustered intrinsic connections in cat visual cortex. J Neurosci. 1983 May;3(5):1116–1133. doi: 10.1523/JNEUROSCI.03-05-01116.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch J. A., Gilbert C. D. Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci. 1991 Jun;11(6):1800–1809. doi: 10.1523/JNEUROSCI.11-06-01800.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature. 1970 Jan 3;225(5227):41–42. doi: 10.1038/225041a0. [DOI] [PubMed] [Google Scholar]
- Li Zhaoping. A saliency map in primary visual cortex. Trends Cogn Sci. 2002 Jan 1;6(1):9–16. doi: 10.1016/s1364-6613(00)01817-9. [DOI] [PubMed] [Google Scholar]
- Marr D., Poggio T. A computational theory of human stereo vision. Proc R Soc Lond B Biol Sci. 1979 May 23;204(1156):301–328. doi: 10.1098/rspb.1979.0029. [DOI] [PubMed] [Google Scholar]
- Marr D., Poggio T. Cooperative computation of stereo disparity. Science. 1976 Oct 15;194(4262):283–287. doi: 10.1126/science.968482. [DOI] [PubMed] [Google Scholar]
- McLoughlin N. P., Grossberg S. Cortical computation of stereo disparity. Vision Res. 1998 Jan;38(1):91–99. doi: 10.1016/s0042-6989(97)00122-3. [DOI] [PubMed] [Google Scholar]
- Nakayama K., Silverman G. H. Serial and parallel processing of visual feature conjunctions. Nature. 1986 Mar 20;320(6059):264–265. doi: 10.1038/320264a0. [DOI] [PubMed] [Google Scholar]
- Pollard S. B., Mayhew J. E., Frisby J. P. PMF: a stereo correspondence algorithm using a disparity gradient limit. Perception. 1985;14(4):449–470. doi: 10.1068/p140449. [DOI] [PubMed] [Google Scholar]
- Prazdny K. Detection of binocular disparities. Biol Cybern. 1985;52(2):93–99. doi: 10.1007/BF00363999. [DOI] [PubMed] [Google Scholar]
- Read Jenny C. A. A Bayesian approach to the stereo correspondence problem. Neural Comput. 2002 Jun;14(6):1371–1392. doi: 10.1162/089976602753712981. [DOI] [PubMed] [Google Scholar]
- Rockland K. S., Lund J. S. Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol. 1983 May 20;216(3):303–318. doi: 10.1002/cne.902160307. [DOI] [PubMed] [Google Scholar]
- Ts'o D. Y., Gilbert C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci. 1988 May;8(5):1712–1727. doi: 10.1523/JNEUROSCI.08-05-01712.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe O., Fukushima K. Stereo algorithm that extracts a depth cue from interocularly unpaired points. Neural Netw. 1999 Jun;12(4-5):569–578. doi: 10.1016/s0893-6080(99)00019-2. [DOI] [PubMed] [Google Scholar]
- Weinshall D. Perception of multiple transparent planes in stereo vision. Nature. 1989 Oct 26;341(6244):737–739. doi: 10.1038/341737a0. [DOI] [PubMed] [Google Scholar]
- Zhang L. I., Poo M. M. Electrical activity and development of neural circuits. Nat Neurosci. 2001 Nov;4 (Suppl):1207–1214. doi: 10.1038/nn753. [DOI] [PubMed] [Google Scholar]
- von der Heydt R., Zhou H., Friedman H. S. Representation of stereoscopic edges in monkey visual cortex. Vision Res. 2000;40(15):1955–1967. doi: 10.1016/s0042-6989(00)00044-4. [DOI] [PubMed] [Google Scholar]