Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jan 29;358(1429):191–202. doi: 10.1098/rstb.2002.1190

Mitochondria and hydrogenosomes are two forms of the same fundamental organelle.

T Martin Embley 1, Mark van der Giezen 1, David S Horner 1, Patricia L Dyal 1, Peter Foster 1
PMCID: PMC1693103  PMID: 12594927

Abstract

Published data suggest that hydrogenosomes, organelles found in diverse anaerobic eukaryotes that make energy and hydrogen, were once mitochondria. As hydrogenosomes generally lack a genome, the conversion is probably one way. The sources of the key hydrogenosomal enzymes, pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, are not resolved by current phylogenetic analyses, but it is likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobic eukaryotes, the proteins are intimately integrated into the fabric of diverse eukaryotic cells, where they are targeted to different cell compartments, and not just hydrogenosomes. There is no evidence supporting the view that PFO and hydrogenase originated from the mitochondrial endosymbiont, as posited by the hydrogen hypothesis for eukaryogenesis. Other organelles derived from mitochondria have now been described in anaerobic and parasitic microbial eukaryotes, including species that were once thought to have diverged before the mitochondrial symbiosis. It thus seems possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, to which different types of biochemistry can be targeted. It remains to be seen if, despite their obvious differences, this family of organelles shares a common function of importance for the eukaryotic cell, other than energy production, that might provide the underlying selection pressure for organelle retention.

Full Text

The Full Text of this article is available as a PDF (290.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhmanova A., Voncken F. G., Hosea K. M., Harhangi H., Keltjens J. T., op den Camp H. J., Vogels G. D., Hackstein J. H. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol. 1999 Jun;32(5):1103–1114. doi: 10.1046/j.1365-2958.1999.01434.x. [DOI] [PubMed] [Google Scholar]
  2. Akhmanova A., Voncken F., van Alen T., van Hoek A., Boxma B., Vogels G., Veenhuis M., Hackstein J. H. A hydrogenosome with a genome. Nature. 1998 Dec 10;396(6711):527–528. doi: 10.1038/25023. [DOI] [PubMed] [Google Scholar]
  3. Albracht S. P., Mariette A., de Jong P. Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):92–106. doi: 10.1016/s0005-2728(96)00153-3. [DOI] [PubMed] [Google Scholar]
  4. Andersson S. G., Kurland C. G. Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol. 1999 Oct;2(5):535–541. doi: 10.1016/s1369-5274(99)00013-2. [DOI] [PubMed] [Google Scholar]
  5. Andersson S. G., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C., Podowski R. M., Näslund A. K., Eriksson A. S., Winkler H. H., Kurland C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998 Nov 12;396(6707):133–140. doi: 10.1038/24094. [DOI] [PubMed] [Google Scholar]
  6. Bapteste Eric, Brinkmann Henner, Lee Jennifer A., Moore Dorothy V., Sensen Christoph W., Gordon Paul, Duruflé Laure, Gaasterland Terry, Lopez Philippe, Müller Miklós. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1414–1419. doi: 10.1073/pnas.032662799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benchimol M., De Souza W. Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool. 1983 May;30(2):422–425. doi: 10.1111/j.1550-7408.1983.tb02942.x. [DOI] [PubMed] [Google Scholar]
  8. Benchimol M., Durand R., Almeida J. C. A double membrane surrounds the hydrogenosomes of the anaerobic fungus Neocallimastix frontalis. FEMS Microbiol Lett. 1997 Sep 15;154(2):277–282. doi: 10.1111/j.1574-6968.1997.tb12656.x. [DOI] [PubMed] [Google Scholar]
  9. Benchimol M., Johnson P. J., de Souza W. Morphogenesis of the hydrogenosome: an ultrastructural study. Biol Cell. 1996;87(3):197–205. [PubMed] [Google Scholar]
  10. Biagini G. A., Finlay B. J., Lloyd D. Evolution of the hydrogenosome. FEMS Microbiol Lett. 1997 Oct 15;155(2):133–140. doi: 10.1016/s0378-1097(97)00333-9. [DOI] [PubMed] [Google Scholar]
  11. Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. doi: 10.1007/BF00175490. [DOI] [PubMed] [Google Scholar]
  12. Bozner P. Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J Parasitol. 1997 Apr;83(2):224–229. [PubMed] [Google Scholar]
  13. Bradley P. J., Lahti C. J., Plümper E., Johnson P. J. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 1997 Jun 16;16(12):3484–3493. doi: 10.1093/emboj/16.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brondijk T. H., Durand R., van der Giezen M., Gottschal J. C., Prins R. A., Fèvre M. scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol Gen Genet. 1996 Dec 13;253(3):315–323. doi: 10.1007/pl00008598. [DOI] [PubMed] [Google Scholar]
  15. Bui E. T., Bradley P. J., Johnson P. J. A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9651–9656. doi: 10.1073/pnas.93.18.9651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bui E. T., Johnson P. J. Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):305–310. doi: 10.1016/0166-6851(96)02567-4. [DOI] [PubMed] [Google Scholar]
  17. Burger G., Zhu Y., Littlejohn T. G., Greenwood S. J., Schnare M. N., Lang B. F., Gray M. W. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol. 2000 Mar 24;297(2):365–380. doi: 10.1006/jmbi.2000.3529. [DOI] [PubMed] [Google Scholar]
  18. Cavalier-Smith T. A revised six-kingdom system of life. Biol Rev Camb Philos Soc. 1998 Aug;73(3):203–266. doi: 10.1017/s0006323198005167. [DOI] [PubMed] [Google Scholar]
  19. Cavalier-Smith T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci. 1987;503:55–71. doi: 10.1111/j.1749-6632.1987.tb40597.x. [DOI] [PubMed] [Google Scholar]
  20. Clark C. G., Roger A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6518–6521. doi: 10.1073/pnas.92.14.6518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Clemens D. L., Johnson P. J. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol. 2000 Mar 5;106(2):307–313. doi: 10.1016/s0166-6851(99)00220-0. [DOI] [PubMed] [Google Scholar]
  22. Davidson Elizabeth A., van der Giezen Mark, Horner David S., Embley T. Martin, Howe Christopher J. An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene. 2002 Aug 21;296(1-2):45–52. doi: 10.1016/s0378-1119(02)00873-9. [DOI] [PubMed] [Google Scholar]
  23. Doolittle W. F. Lateral genomics. Trends Cell Biol. 1999 Dec;9(12):M5–M8. [PubMed] [Google Scholar]
  24. Doolittle W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998 Aug;14(8):307–311. doi: 10.1016/s0168-9525(98)01494-2. [DOI] [PubMed] [Google Scholar]
  25. Dyall S. D., Koehler C. M., Delgadillo-Correa M. G., Bradley P. J., Plümper E., Leuenberger D., Turck C. W., Johnson P. J. Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol. 2000 Apr;20(7):2488–2497. doi: 10.1128/mcb.20.7.2488-2497.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Eisen J. A. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev. 2000 Dec;10(6):606–611. doi: 10.1016/s0959-437x(00)00143-x. [DOI] [PubMed] [Google Scholar]
  27. Embley T. M., Finlay B. J., Dyal P. L., Hirt R. P., Wilkinson M., Williams A. G. Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc Biol Sci. 1995 Oct 23;262(1363):87–93. doi: 10.1098/rspb.1995.0180. [DOI] [PubMed] [Google Scholar]
  28. Embley T. M., Finlay B. J. The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology. 1994 Feb;140(Pt 2):225–235. doi: 10.1099/13500872-140-2-225. [DOI] [PubMed] [Google Scholar]
  29. Embley T. M., Hirt R. P. Early branching eukaryotes? Curr Opin Genet Dev. 1998 Dec;8(6):624–629. doi: 10.1016/s0959-437x(98)80029-4. [DOI] [PubMed] [Google Scholar]
  30. Embley T. M., Martin W. A hydrogen-producing mitochondrion. Nature. 1998 Dec 10;396(6711):517–519. doi: 10.1038/24994. [DOI] [PubMed] [Google Scholar]
  31. Florin L., Tsokoglou A., Happe T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem. 2000 Nov 28;276(9):6125–6132. doi: 10.1074/jbc.M008470200. [DOI] [PubMed] [Google Scholar]
  32. Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
  33. Gray M. W., Lang B. F., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Brossard N., Delage E., Littlejohn T. G. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 1998 Feb 15;26(4):865–878. doi: 10.1093/nar/26.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hackstein J. H., Akhmanova A., Boxma B., Harhangi H. R., Voncken F. G. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol. 1999 Nov;7(11):441–447. doi: 10.1016/s0966-842x(99)01613-3. [DOI] [PubMed] [Google Scholar]
  35. Hansen J., Cherest H., Kielland-Brandt M. C. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol. 1994 Oct;176(19):6050–6058. doi: 10.1128/jb.176.19.6050-6058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Happe T., Mosler B., Naber J. D. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem. 1994 Jun 15;222(3):769–774. doi: 10.1111/j.1432-1033.1994.tb18923.x. [DOI] [PubMed] [Google Scholar]
  37. Happe Thomas, Hemschemeier Anja, Winkler Martin, Kaminski Annette. Hydrogenases in green algae: do they save the algae's life and solve our energy problems? Trends Plant Sci. 2002 Jun;7(6):246–250. doi: 10.1016/s1360-1385(02)02274-4. [DOI] [PubMed] [Google Scholar]
  38. Henze K., Horner D. S., Suguri S., Moore D. V., Sánchez L. B., Müller M., Embley T. M. Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. Gene. 2001 Dec 27;281(1-2):123–131. doi: 10.1016/s0378-1119(01)00773-9. [DOI] [PubMed] [Google Scholar]
  39. Hirt R. P., Logsdon J. M., Jr, Healy B., Dorey M. W., Doolittle W. F., Embley T. M. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):580–585. doi: 10.1073/pnas.96.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Horner D. S., Embley T. M. Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol. 2001 Oct;18(10):1970–1975. doi: 10.1093/oxfordjournals.molbev.a003737. [DOI] [PubMed] [Google Scholar]
  41. Horner D. S., Foster P. G., Embley T. M. Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol. 2000 Nov;17(11):1695–1709. doi: 10.1093/oxfordjournals.molbev.a026268. [DOI] [PubMed] [Google Scholar]
  42. Horner D. S., Hirt R. P., Embley T. M. A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol. 1999 Sep;16(9):1280–1291. doi: 10.1093/oxfordjournals.molbev.a026218. [DOI] [PubMed] [Google Scholar]
  43. Horner D. S., Hirt R. P., Kilvington S., Lloyd D., Embley T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc Biol Sci. 1996 Aug 22;263(1373):1053–1059. doi: 10.1098/rspb.1996.0155. [DOI] [PubMed] [Google Scholar]
  44. Horner David S., Heil Burkhard, Happe Thomas, Embley T. Martin. Iron hydrogenases--ancient enzymes in modern eukaryotes. Trends Biochem Sci. 2002 Mar;27(3):148–153. doi: 10.1016/s0968-0004(01)02053-9. [DOI] [PubMed] [Google Scholar]
  45. Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
  46. Häusler T., Stierhof Y. D., Blattner J., Clayton C. Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol. 1997 Jul;73(3):240–251. [PubMed] [Google Scholar]
  47. Katinka M. D., Duprat S., Cornillot E., Méténier G., Thomarat F., Prensier G., Barbe V., Peyretaillade E., Brottier P., Wincker P. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001 Nov 22;414(6862):450–453. doi: 10.1038/35106579. [DOI] [PubMed] [Google Scholar]
  48. Kletzin A., Adams M. W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 1996 Jan;178(1):248–257. doi: 10.1128/jb.178.1.248-257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kobayashi K., Yoshimoto A. Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta. 1982 Aug 10;705(3):348–356. doi: 10.1016/0167-4838(82)90257-6. [DOI] [PubMed] [Google Scholar]
  50. Koski L. B., Golding G. B. The closest BLAST hit is often not the nearest neighbor. J Mol Evol. 2001 Jun;52(6):540–542. doi: 10.1007/s002390010184. [DOI] [PubMed] [Google Scholar]
  51. Kulda J. Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol. 1999 Feb;29(2):199–212. doi: 10.1016/s0020-7519(98)00155-6. [DOI] [PubMed] [Google Scholar]
  52. Kumar S., Rzhetsky A. Evolutionary relationships of eukaryotic kingdoms. J Mol Evol. 1996 Feb;42(2):183–193. doi: 10.1007/BF02198844. [DOI] [PubMed] [Google Scholar]
  53. Kurland C. G., Andersson S. G. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev. 2000 Dec;64(4):786–820. doi: 10.1128/mmbr.64.4.786-820.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lill R., Kispal G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci. 2000 Aug;25(8):352–356. doi: 10.1016/s0968-0004(00)01589-9. [DOI] [PubMed] [Google Scholar]
  55. Lindmark D. G., Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973 Nov 25;248(22):7724–7728. [PubMed] [Google Scholar]
  56. Lloyd D., Hillman K., Yarlett N., Williams A. G. Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions. J Protozool. 1989 Mar-Apr;36(2):205–213. doi: 10.1111/j.1550-7408.1989.tb01075.x. [DOI] [PubMed] [Google Scholar]
  57. Lloyd David, Harris Janine C. Giardia: highly evolved parasite or early branching eukaryote? Trends Microbiol. 2002 Mar;10(3):122–127. doi: 10.1016/s0966-842x(02)02306-5. [DOI] [PubMed] [Google Scholar]
  58. Lloyd David, Ralphs James R., Harris Janine C. Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology. 2002 Mar;148(Pt 3):727–733. doi: 10.1099/00221287-148-3-727. [DOI] [PubMed] [Google Scholar]
  59. Lloyd David, Ralphs James R., Harris Janine C. Hydrogen production in Giardia intestinalis, a eukaryote with no hydrogenosomes. Trends Parasitol. 2002 Apr;18(4):155–156. doi: 10.1016/s1471-4922(01)02174-2. [DOI] [PubMed] [Google Scholar]
  60. Mai Z., Ghosh S., Frisardi M., Rosenthal B., Rogers R., Samuelson J. Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol. 1999 Mar;19(3):2198–2205. doi: 10.1128/mcb.19.3.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays. 1999 Feb;21(2):99–104. doi: 10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  62. Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998 Mar 5;392(6671):37–41. doi: 10.1038/32096. [DOI] [PubMed] [Google Scholar]
  63. Marvin-Sikkema F. D., Kraak M. N., Veenhuis M., Gottschal J. C., Prins R. A. The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp. L2 is recognized by antibodies, directed against the C-terminal microbody protein targeting signal SKL. Eur J Cell Biol. 1993 Jun;61(1):86–91. [PubMed] [Google Scholar]
  64. Marvin-Sikkema F. D., Pedro Gomes T. M., Grivet J. P., Gottschal J. C., Prins R. A. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol. 1993;160(5):388–396. doi: 10.1007/BF00252226. [DOI] [PubMed] [Google Scholar]
  65. Morrison H. G., Roger A. J., Nystul T. G., Gillin F. D., Sogin M. L. Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol. 2001 Apr;18(4):530–541. doi: 10.1093/oxfordjournals.molbev.a003832. [DOI] [PubMed] [Google Scholar]
  66. Müller M. The hydrogenosome. J Gen Microbiol. 1993 Dec;139(12):2879–2889. doi: 10.1099/00221287-139-12-2879. [DOI] [PubMed] [Google Scholar]
  67. Nicolet Y., Lemon B. J., Fontecilla-Camps J. C., Peters J. W. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci. 2000 Mar;25(3):138–143. doi: 10.1016/s0968-0004(99)01536-4. [DOI] [PubMed] [Google Scholar]
  68. O'Fallon J. V., Wright R. W., Jr, Calza R. E. Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem J. 1991 Mar 1;274(Pt 2):595–599. doi: 10.1042/bj2740595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Payne M. J., Chapman A., Cammack R. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 1993 Feb 8;317(1-2):101–104. doi: 10.1016/0014-5793(93)81500-y. [DOI] [PubMed] [Google Scholar]
  70. Pfanner N., Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol. 2001 May;2(5):339–349. doi: 10.1038/35073006. [DOI] [PubMed] [Google Scholar]
  71. Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent J., Moreira D., Müller M., Le Guyader H. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci. 2000 Jun 22;267(1449):1213–1221. doi: 10.1098/rspb.2000.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Pilkington S. J., Skehel J. M., Gennis R. B., Walker J. E. Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry. 1991 Feb 26;30(8):2166–2175. doi: 10.1021/bi00222a021. [DOI] [PubMed] [Google Scholar]
  73. Ragan M. A. Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev. 2001 Dec;11(6):620–626. doi: 10.1016/s0959-437x(00)00244-6. [DOI] [PubMed] [Google Scholar]
  74. Ragan M. A. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett. 2001 Jul 24;201(2):187–191. doi: 10.1111/j.1574-6968.2001.tb10755.x. [DOI] [PubMed] [Google Scholar]
  75. Roger A. J., Svärd S. G., Tovar J., Clark C. G., Smith M. W., Gillin F. D., Sogin M. L. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):229–234. doi: 10.1073/pnas.95.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Roger AJ. Reconstructing Early Events in Eukaryotic Evolution. Am Nat. 1999 Oct;154(S4):S146–S163. doi: 10.1086/303290. [DOI] [PubMed] [Google Scholar]
  77. Roger Andrew J., Silberman Jeffrey D. Cell evolution: mitochondria in hiding. Nature. 2002 Aug 22;418(6900):827–829. doi: 10.1038/418827a. [DOI] [PubMed] [Google Scholar]
  78. Rosenthal B., Mai Z., Caplivski D., Ghosh S., de la Vega H., Graf T., Samuelson J. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J Bacteriol. 1997 Jun;179(11):3736–3745. doi: 10.1128/jb.179.11.3736-3745.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Rotte C., Stejskal F., Zhu G., Keithly J. S., Martin W. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001 May;18(5):710–720. doi: 10.1093/oxfordjournals.molbev.a003853. [DOI] [PubMed] [Google Scholar]
  80. Salzberg S. L., White O., Peterson J., Eisen J. A. Microbial genes in the human genome: lateral transfer or gene loss? Science. 2001 May 17;292(5523):1903–1906. doi: 10.1126/science.1061036. [DOI] [PubMed] [Google Scholar]
  81. Sogin M. l. History assignment: when was the mitochondrion founded? Curr Opin Genet Dev. 1997 Dec;7(6):792–799. doi: 10.1016/s0959-437x(97)80042-1. [DOI] [PubMed] [Google Scholar]
  82. Stechmann Alexandra, Cavalier-Smith Thomas. Rooting the eukaryote tree by using a derived gene fusion. Science. 2002 Jul 5;297(5578):89–91. doi: 10.1126/science.1071196. [DOI] [PubMed] [Google Scholar]
  83. Tachezy J., Sánchez L. B., Müller M. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 2001 Oct;18(10):1919–1928. doi: 10.1093/oxfordjournals.molbev.a003732. [DOI] [PubMed] [Google Scholar]
  84. Tielens A. G., Van Hellemond J. J. The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):71–78. doi: 10.1016/s0005-2728(98)00045-0. [DOI] [PubMed] [Google Scholar]
  85. Tovar J., Fischer A., Clark C. G. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999 Jun;32(5):1013–1021. doi: 10.1046/j.1365-2958.1999.01414.x. [DOI] [PubMed] [Google Scholar]
  86. Viale A. M., Arakaki A. K. The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett. 1994 Mar 21;341(2-3):146–151. doi: 10.1016/0014-5793(94)80446-x. [DOI] [PubMed] [Google Scholar]
  87. Voncken Frank G. J., Boxma Brigitte, van Hoek Angela H. A. M., Akhmanova Anna S., Vogels Godfried D., Huynen Martijn, Veenhuis Marten, Hackstein Johannes H. P. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene. 2002 Feb 6;284(1-2):103–112. doi: 10.1016/s0378-1119(02)00388-8. [DOI] [PubMed] [Google Scholar]
  88. Voncken Frank, Boxma Brigitte, Tjaden Joachim, Akhmanova Anna, Huynen Martijn, Verbeek Fons, Tielens Aloysius G. M., Haferkamp Ilka, Neuhaus H. Ekkehard, Vogels Godfried. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol. 2002 Jun;44(6):1441–1454. doi: 10.1046/j.1365-2958.2002.02959.x. [DOI] [PubMed] [Google Scholar]
  89. Whatley J. M., John P., Whatley F. R. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):165–187. doi: 10.1098/rspb.1979.0020. [DOI] [PubMed] [Google Scholar]
  90. Williams Bryony A. P., Hirt Robert P., Lucocq John M., Embley T. Martin. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature. 2002 Aug 22;418(6900):865–869. doi: 10.1038/nature00949. [DOI] [PubMed] [Google Scholar]
  91. Winkler Martin, Heil Burkhard, Heil Bettina, Happe Thomas. Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta. 2002 Jul 19;1576(3):330–334. doi: 10.1016/s0167-4781(02)00239-7. [DOI] [PubMed] [Google Scholar]
  92. Winzeler E. A., Liang H., Shoemaker D. D., Davis R. W. Functional analysis of the yeast genome by precise deletion and parallel phenotypic characterization. Novartis Found Symp. 2000;229:105–111. doi: 10.1002/047084664x.ch14. [DOI] [PubMed] [Google Scholar]
  93. Yarlett N., Hann A. C., Lloyd D., Williams A. G. Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol B. 1983;74(2):357–364. doi: 10.1016/0305-0491(83)90025-1. [DOI] [PubMed] [Google Scholar]
  94. Yarlett N., Hann A. C., Lloyd D., Williams A. Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J. 1981 Nov 15;200(2):365–372. doi: 10.1042/bj2000365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Yarlett N., Orpin C. G., Munn E. A., Yarlett N. C., Greenwood C. A. Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J. 1986 Jun 15;236(3):729–739. doi: 10.1042/bj2360729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. van der Giezen M., Kiel J. A., Sjollema K. A., Prins R. A. The hydrogenosomal malic enzyme from the anaerobic fungus neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast hansenula polymorpha. Curr Genet. 1998 Feb;33(2):131–135. doi: 10.1007/s002940050318. [DOI] [PubMed] [Google Scholar]
  97. van der Giezen M., Rechinger K. B., Svendsen I., Durand R., Hirt R. P., Fèvre M., Embley T. M., Prins R. A. A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol. 1997 Jan;23(1):11–21. doi: 10.1046/j.1365-2958.1997.1891553.x. [DOI] [PubMed] [Google Scholar]
  98. van der Giezen M., Sjollema K. A., Artz R. R., Alkema W., Prins R. A. Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 1997 May 19;408(2):147–150. doi: 10.1016/s0014-5793(97)00409-2. [DOI] [PubMed] [Google Scholar]
  99. van der Giezen Mark, Slotboom Dirk Jan, Horner David S., Dyal Patricia L., Harding Marilyn, Xue Gang-Ping, Embley T. Martin, Kunji Edmund R. S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002 Feb 15;21(4):572–579. doi: 10.1093/emboj/21.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES