Abstract
This article attempts an overview of the mechanism of NMDAR-dependent long-term potentiation (LTP) and its role in hippocampal networks. Efforts are made to integrate information, often in speculative ways, and to identify unresolved issues about the induction, expression and molecular storage processes. The pre/post debate about LTP expression has been particularly difficult to resolve. The following hypothesis attempts to reconcile the available physiological evidence as well as anatomical evidence that LTP increases synapse size. It is proposed that synapses are composed of a variable number of trans-synaptic modules, each having presynaptic release sites and a postsynaptic structure that can be AMPAfied by the addition of a hyperslot assembly that anchors 10-20 AMPA channels. According to a newly developed view of transmission, the quantal response is generated by AMPA channels near the site of vesicle release and so will depend on whether the module where release occurs has been AMPAfied. LTP expression may involve two structurally mediated processes: (i) the AMPAfication of existing modules by addition of hyperslot assemblies: this is a purely postsynaptic process and produces an increase in the probability of an AMPA response, with no change in the NMDA component; and (ii) the addition of new modules: this is a structurally coordinated pre/post process that leads to LTP-induced synapse enlargement and potentiation of the NMDA component owing to an increase in the number of release sites (the number of NMDA channels is assumed to be fixed). The protocol used for LTP induction appears to affect the proportion of these two processes; pairing protocols that involve low-frequency presynaptic stimulation induce only AMPAfication, making LTP purely postsynaptic, whereas high-frequency stimulation evokes both processes, giving rise to a presynaptic component. This model is capable of reconciling much of the seemingly contradictory evidence in the pre/post debate. The structural nature of the postulated changes is relevant to a second debate: whether a CaMKII switch or protein-dependent structural change is the molecular memory mechanism. A possible reconciliation is that a reversible CaMKII switch controls the construction of modules and hyperslot assemblies from newly synthesized proteins.
Full Text
The Full Text of this article is available as a PDF (379.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asztely Fredrik, Wigström Holger, Gustafsson Bengt. The Relative Contribution of NMDA Receptor Channels in the Expression of Long-term Potentiation in the Hippocampal CA1 Region. Eur J Neurosci. 1992;4(8):681–690. doi: 10.1111/j.1460-9568.1992.tb00177.x. [DOI] [PubMed] [Google Scholar]
- Barco Angel, Alarcon Juan M., Kandel Eric R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002 Mar 8;108(5):689–703. doi: 10.1016/s0092-8674(02)00657-8. [DOI] [PubMed] [Google Scholar]
- Barria A., Muller D., Derkach V., Griffith L. C., Soderling T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997 Jun 27;276(5321):2042–2045. doi: 10.1126/science.276.5321.2042. [DOI] [PubMed] [Google Scholar]
- Bashir Z. I., Alford S., Davies S. N., Randall A. D., Collingridge G. L. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature. 1991 Jan 10;349(6305):156–158. doi: 10.1038/349156a0. [DOI] [PubMed] [Google Scholar]
- Bayer K. U., De Koninck P., Leonard A. S., Hell J. W., Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001 Jun 14;411(6839):801–805. doi: 10.1038/35081080. [DOI] [PubMed] [Google Scholar]
- Benke T. A., Lüthi A., Isaac J. T., Collingridge G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998 Jun 25;393(6687):793–797. doi: 10.1038/31709. [DOI] [PubMed] [Google Scholar]
- Bolshakov V. Y., Golan H., Kandel E. R., Siegelbaum S. A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron. 1997 Sep;19(3):635–651. doi: 10.1016/s0896-6273(00)80377-3. [DOI] [PubMed] [Google Scholar]
- Bortolotto Z. A., Bashir Z. I., Davies C. H., Collingridge G. L. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature. 1994 Apr 21;368(6473):740–743. doi: 10.1038/368740a0. [DOI] [PubMed] [Google Scholar]
- Bozdagi O., Shan W., Tanaka H., Benson D. L., Huntley G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron. 2000 Oct;28(1):245–259. doi: 10.1016/s0896-6273(00)00100-8. [DOI] [PubMed] [Google Scholar]
- Brown G. P., Blitzer R. D., Connor J. H., Wong T., Shenolikar S., Iyengar R., Landau E. M. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J Neurosci. 2000 Nov 1;20(21):7880–7887. doi: 10.1523/JNEUROSCI.20-21-07880.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchs P. A., Muller D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8040–8045. doi: 10.1073/pnas.93.15.8040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgin K. E., Waxham M. N., Rickling S., Westgate S. A., Mobley W. C., Kelly P. T. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci. 1990 Jun;10(6):1788–1798. doi: 10.1523/JNEUROSCI.10-06-01788.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L., Chetkovich D. M., Petralia R. S., Sweeney N. T., Kawasaki Y., Wenthold R. J., Bredt D. S., Nicoll R. A. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature. 2000 Dec 21;408(6815):936–943. doi: 10.1038/35050030. [DOI] [PubMed] [Google Scholar]
- Chetkovich D. M., Sweatt J. D. nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem. 1993 Nov;61(5):1933–1942. doi: 10.1111/j.1471-4159.1993.tb09836.x. [DOI] [PubMed] [Google Scholar]
- Choi S., Klingauf J., Tsien R. W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci. 2000 Apr;3(4):330–336. doi: 10.1038/73895. [DOI] [PubMed] [Google Scholar]
- Daw Michael I., Bortolotto Zuner A., Saulle Emilia, Zaman Shahid, Collingridge Graham L., Isaac John T. R. Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nat Neurosci. 2002 Sep;5(9):835–836. doi: 10.1038/nn903. [DOI] [PubMed] [Google Scholar]
- Diamond J. S., Jahr C. E. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron. 1995 Nov;15(5):1097–1107. doi: 10.1016/0896-6273(95)90098-5. [DOI] [PubMed] [Google Scholar]
- El-Husseini A. E., Schnell E., Chetkovich D. M., Nicoll R. A., Bredt D. S. PSD-95 involvement in maturation of excitatory synapses. Science. 2000 Nov 17;290(5495):1364–1368. [PubMed] [Google Scholar]
- El-Husseini Alaa El-Din, Schnell Eric, Dakoji Srikanth, Sweeney Neal, Zhou Qiang, Prange Oliver, Gauthier-Campbell Catherine, Aguilera-Moreno Andrea, Nicoll Roger A., Bredt David S. Synaptic strength regulated by palmitate cycling on PSD-95. Cell. 2002 Mar 22;108(6):849–863. doi: 10.1016/s0092-8674(02)00683-9. [DOI] [PubMed] [Google Scholar]
- Engert F., Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999 May 6;399(6731):66–70. doi: 10.1038/19978. [DOI] [PubMed] [Google Scholar]
- Fortin Norbert J., Agster Kara L., Eichenbaum Howard B. Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002 May;5(5):458–462. doi: 10.1038/nn834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster T. C., McNaughton B. L. Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus. 1991 Jan;1(1):79–91. doi: 10.1002/hipo.450010108. [DOI] [PubMed] [Google Scholar]
- Frey U., Krug M., Reymann K. G., Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 1988 Jun 14;452(1-2):57–65. doi: 10.1016/0006-8993(88)90008-x. [DOI] [PubMed] [Google Scholar]
- Frey U., Morris R. G. Synaptic tagging and long-term potentiation. Nature. 1997 Feb 6;385(6616):533–536. doi: 10.1038/385533a0. [DOI] [PubMed] [Google Scholar]
- Frey U., Morris R. G. Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology. 1998 Apr-May;37(4-5):545–552. doi: 10.1016/s0028-3908(98)00040-9. [DOI] [PubMed] [Google Scholar]
- Frey U., Schollmeier K., Reymann K. G., Seidenbecher T. Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience. 1995 Aug;67(4):799–807. doi: 10.1016/0306-4522(95)00117-2. [DOI] [PubMed] [Google Scholar]
- Fukunaga K., Stoppini L., Miyamoto E., Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993 Apr 15;268(11):7863–7867. [PubMed] [Google Scholar]
- Gardoni F., Caputi A., Cimino M., Pastorino L., Cattabeni F., Di Luca M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998 Oct;71(4):1733–1741. doi: 10.1046/j.1471-4159.1998.71041733.x. [DOI] [PubMed] [Google Scholar]
- Gasparini S., Saviane C., Voronin L. L., Cherubini E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9741–9746. doi: 10.1073/pnas.170032297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geinisman Y., Detoledo-Morrell L., Morrell F., Heller R. E. Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol. 1995 Feb;45(3):223–252. doi: 10.1016/0301-0082(94)00047-l. [DOI] [PubMed] [Google Scholar]
- Genoux David, Haditsch Ursula, Knobloch Marlen, Michalon Aubin, Storm Daniel, Mansuy Isabelle M. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature. 2002 Aug 29;418(6901):970–975. doi: 10.1038/nature00928. [DOI] [PubMed] [Google Scholar]
- Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. doi: 10.1126/science.279.5352.870. [DOI] [PubMed] [Google Scholar]
- Hanson P. I., Meyer T., Stryer L., Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994 May;12(5):943–956. doi: 10.1016/0896-6273(94)90306-9. [DOI] [PubMed] [Google Scholar]
- Harris K. M., Jensen F. E., Tsao B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci. 1992 Jul;12(7):2685–2705. doi: 10.1523/JNEUROSCI.12-07-02685.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi Y., Shi S. H., Esteban J. A., Piccini A., Poncer J. C., Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 2000 Mar 24;287(5461):2262–2267. doi: 10.1126/science.287.5461.2262. [DOI] [PubMed] [Google Scholar]
- Hoffman D. A., Sprengel R., Sakmann B. Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7740–7745. doi: 10.1073/pnas.092157999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Yi-Shuian, Jung Mi-Young, Sarkissian Madathia, Richter Joel D. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J. 2002 May 1;21(9):2139–2148. doi: 10.1093/emboj/21.9.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen O., Lisman J. E. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem. 1996 Sep-Oct;3(2-3):279–287. doi: 10.1101/lm.3.2-3.279. [DOI] [PubMed] [Google Scholar]
- Kandel E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001 Nov 2;294(5544):1030–1038. doi: 10.1126/science.1067020. [DOI] [PubMed] [Google Scholar]
- Krucker Thomas, Siggins George R., McNamara Robert K., Lindsley Kristen A., Dao Alan, Allison David W., De Lecea Luis, Lovenberg Timothy W., Sutcliffe J. Gregor, Gerendasy Dan D. Targeted disruption of RC3 reveals a calmodulin-based mechanism for regulating metaplasticity in the hippocampus. J Neurosci. 2002 Jul 1;22(13):5525–5535. doi: 10.1523/JNEUROSCI.22-13-05525.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhnt U., Hess G., Voronin L. L. Statistical analysis of long-term potentiation of large excitatory postsynaptic potentials recorded in guinea pig hippocampal slices: binomial model. Exp Brain Res. 1992;89(2):265–274. doi: 10.1007/BF00228243. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron. 1994 May;12(5):1111–1120. doi: 10.1016/0896-6273(94)90318-2. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M., Erdemli G., Asztély F. LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996 Sep;17(3):461–474. doi: 10.1016/s0896-6273(00)80178-6. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M., Nicoll R. A. Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature. 1992 May 21;357(6375):240–244. doi: 10.1038/357240a0. [DOI] [PubMed] [Google Scholar]
- Larkman A. U., Jack J. J., Stratford K. J. Quantal analysis of excitatory synapses in rat hippocampal CA1 in vitro during low-frequency depression. J Physiol. 1997 Dec 1;505(Pt 2):457–471. doi: 10.1111/j.1469-7793.1997.457bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larkman A., Stratford K., Jack J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature. 1991 Mar 28;350(6316):344–347. doi: 10.1038/350344a0. [DOI] [PubMed] [Google Scholar]
- Lee H. K., Barbarosie M., Kameyama K., Bear M. F., Huganir R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000 Jun 22;405(6789):955–959. doi: 10.1038/35016089. [DOI] [PubMed] [Google Scholar]
- Liao D., Jones A., Malinow R. Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron. 1992 Dec;9(6):1089–1097. doi: 10.1016/0896-6273(92)90068-o. [DOI] [PubMed] [Google Scholar]
- Ling Douglas S. F., Benardo Larry S., Serrano Peter A., Blace Nancy, Kelly Matthew T., Crary John F., Sacktor Todd C. Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci. 2002 Apr;5(4):295–296. doi: 10.1038/nn829. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Harris K. M. Quantal analysis and synaptic anatomy--integrating two views of hippocampal plasticity. Trends Neurosci. 1993 Apr;16(4):141–147. doi: 10.1016/0166-2236(93)90122-3. [DOI] [PubMed] [Google Scholar]
- Lisman J. E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron. 1999 Feb;22(2):233–242. doi: 10.1016/s0896-6273(00)81085-5. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Zhabotinsky A. M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 2001 Aug 2;31(2):191–201. doi: 10.1016/s0896-6273(01)00364-6. [DOI] [PubMed] [Google Scholar]
- Lisman J., Schulman H., Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002 Mar;3(3):175–190. doi: 10.1038/nrn753. [DOI] [PubMed] [Google Scholar]
- Liu G., Choi S., Tsien R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron. 1999 Feb;22(2):395–409. doi: 10.1016/s0896-6273(00)81099-5. [DOI] [PubMed] [Google Scholar]
- Ma L., Zablow L., Kandel E. R., Siegelbaum S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nat Neurosci. 1999 Jan;2(1):24–30. doi: 10.1038/4525. [DOI] [PubMed] [Google Scholar]
- Magee J. C., Cook E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci. 2000 Sep;3(9):895–903. doi: 10.1038/78800. [DOI] [PubMed] [Google Scholar]
- Makhinson M., Chotiner J. K., Watson J. B., O'Dell T. J. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci. 1999 Apr 1;19(7):2500–2510. doi: 10.1523/JNEUROSCI.19-07-02500.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malinow R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science. 1991 May 3;252(5006):722–724. doi: 10.1126/science.1850871. [DOI] [PubMed] [Google Scholar]
- Matsuzaki M., Ellis-Davies G. C., Nemoto T., Miyashita Y., Iino M., Kasai H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci. 2001 Nov;4(11):1086–1092. doi: 10.1038/nn736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister A. K., Stevens C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6173–6178. doi: 10.1073/pnas.100126497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
- Montgomery J. M., Pavlidis P., Madison D. V. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron. 2001 Mar;29(3):691–701. doi: 10.1016/s0896-6273(01)00244-6. [DOI] [PubMed] [Google Scholar]
- Montgomery Johanna M., Madison Daniel V. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron. 2002 Feb 28;33(5):765–777. doi: 10.1016/s0896-6273(02)00606-2. [DOI] [PubMed] [Google Scholar]
- Nakazawa Kazu, Quirk Michael C., Chitwood Raymond A., Watanabe Masahiko, Yeckel Mark F., Sun Linus D., Kato Akira, Carr Candice A., Johnston Daniel, Wilson Matthew A. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002 May 30;297(5579):211–218. doi: 10.1126/science.1071795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nusser Z., Lujan R., Laube G., Roberts J. D., Molnar E., Somogyi P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron. 1998 Sep;21(3):545–559. doi: 10.1016/s0896-6273(00)80565-6. [DOI] [PubMed] [Google Scholar]
- Nádasdy Z., Hirase H., Czurkó A., Csicsvari J., Buzsáki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci. 1999 Nov 1;19(21):9497–9507. doi: 10.1523/JNEUROSCI.19-21-09497.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Keefe J., Recce M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993 Jul;3(3):317–330. doi: 10.1002/hipo.450030307. [DOI] [PubMed] [Google Scholar]
- Ostroff Linnaea E., Fiala John C., Allwardt Brenda, Harris Kristen M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron. 2002 Aug 1;35(3):535–545. doi: 10.1016/s0896-6273(02)00785-7. [DOI] [PubMed] [Google Scholar]
- Otmakhov N., Griffith L. C., Lisman J. E. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci. 1997 Jul 15;17(14):5357–5365. doi: 10.1523/JNEUROSCI.17-14-05357.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouyang Y., Rosenstein A., Kreiman G., Schuman E. M., Kennedy M. B. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999 Sep 15;19(18):7823–7833. doi: 10.1523/JNEUROSCI.19-18-07823.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Passafaro M., Piëch V., Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci. 2001 Sep;4(9):917–926. doi: 10.1038/nn0901-917. [DOI] [PubMed] [Google Scholar]
- Petersen C. C., Malenka R. C., Nicoll R. A., Hopfield J. J. All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4732–4737. doi: 10.1073/pnas.95.8.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petralia R. S., Esteban J. A., Wang Y. X., Partridge J. G., Zhao H. M., Wenthold R. J., Malinow R. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci. 1999 Jan;2(1):31–36. doi: 10.1038/4532. [DOI] [PubMed] [Google Scholar]
- Poncer Jean Christophe, Esteban Jose A., Malinow Roberto. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2002 Jun 1;22(11):4406–4411. doi: 10.1523/JNEUROSCI.22-11-04406.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racca C., Stephenson F. A., Streit P., Roberts J. D., Somogyi P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci. 2000 Apr 1;20(7):2512–2522. doi: 10.1523/JNEUROSCI.20-07-02512.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renger J. J., Egles C., Liu G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron. 2001 Feb;29(2):469–484. doi: 10.1016/s0896-6273(01)00219-7. [DOI] [PubMed] [Google Scholar]
- Sanna Pietro Paolo, Cammalleri Maurizio, Berton Fulvia, Simpson Cindy, Lutjens Robert, Bloom Floyd E., Francesconi Walter. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci. 2002 May 1;22(9):3359–3365. doi: 10.1523/JNEUROSCI.22-09-03359.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selig D. K., Hjelmstad G. O., Herron C., Nicoll R. A., Malenka R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron. 1995 Aug;15(2):417–426. doi: 10.1016/0896-6273(95)90045-4. [DOI] [PubMed] [Google Scholar]
- Shen K., Teruel M. N., Connor J. H., Shenolikar S., Meyer T. Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat Neurosci. 2000 Sep;3(9):881–886. doi: 10.1038/78783. [DOI] [PubMed] [Google Scholar]
- Shi S., Hayashi Y., Esteban J. A., Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell. 2001 May 4;105(3):331–343. doi: 10.1016/s0092-8674(01)00321-x. [DOI] [PubMed] [Google Scholar]
- Skaggs W. E., McNaughton B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996 Mar 29;271(5257):1870–1873. doi: 10.1126/science.271.5257.1870. [DOI] [PubMed] [Google Scholar]
- Skaggs W. E., McNaughton B. L., Wilson M. A., Barnes C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6(2):149–172. doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Strack S., Barban M. A., Wadzinski B. E., Colbran R. J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem. 1997 May;68(5):2119–2128. doi: 10.1046/j.1471-4159.1997.68052119.x. [DOI] [PubMed] [Google Scholar]
- Stricker C., Field A. C., Redman S. J. Changes in quantal parameters of EPSCs in rat CA1 neurones in vitro after the induction of long-term potentiation. J Physiol. 1996 Jan 15;490(Pt 2):443–454. doi: 10.1113/jphysiol.1996.sp021156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stricker C., Field A. C., Redman S. J. Statistical analysis of amplitude fluctuations in EPSCs evoked in rat CA1 pyramidal neurones in vitro. J Physiol. 1996 Jan 15;490(Pt 2):419–441. doi: 10.1113/jphysiol.1996.sp021155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takumi Y., Ramírez-León V., Laake P., Rinvik E., Ottersen O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999 Jul;2(7):618–624. doi: 10.1038/10172. [DOI] [PubMed] [Google Scholar]
- Tsodyks M. V., Skaggs W. E., Sejnowski T. J., McNaughton B. L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus. 1996;6(3):271–280. doi: 10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Walikonis R. S., Oguni A., Khorosheva E. M., Jeng C. J., Asuncion F. J., Kennedy M. B. Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. J Neurosci. 2001 Jan 15;21(2):423–433. doi: 10.1523/JNEUROSCI.21-02-00423.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeks Andrew C. W., Ivanco Tammy L., Leboutillier Janelle C., Marrone Diano F., Racine Ronald J., Petit Ted L. Unique changes in synaptic morphology following tetanization under pharmacological blockade. Synapse. 2003 Jan;47(1):77–86. doi: 10.1002/syn.10113. [DOI] [PubMed] [Google Scholar]
- Wittenberg Gayle M., Tsien Joe Z. An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 2002 Oct;25(10):501–505. doi: 10.1016/s0166-2236(02)02231-2. [DOI] [PubMed] [Google Scholar]
- Wong S. T., Athos J., Figueroa X. A., Pineda V. V., Schaefer M. L., Chavkin C. C., Muglia L. J., Storm D. R. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron. 1999 Aug;23(4):787–798. doi: 10.1016/s0896-6273(01)80036-2. [DOI] [PubMed] [Google Scholar]
- Xie X., Berger T. W., Barrionuevo G. Isolated NMDA receptor-mediated synaptic responses express both LTP and LTD. J Neurophysiol. 1992 Apr;67(4):1009–1013. doi: 10.1152/jn.1992.67.4.1009. [DOI] [PubMed] [Google Scholar]
- Zhu J. Julius, Qin Yi, Zhao Mingming, Van Aelst Linda, Malinow Roberto. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002 Aug 23;110(4):443–455. doi: 10.1016/s0092-8674(02)00897-8. [DOI] [PubMed] [Google Scholar]