Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Apr 29;358(1432):821–828. doi: 10.1098/rstb.2002.1240

Synaptic plasticity in animal models of early Alzheimer's disease.

Michael J Rowan 1, Igor Klyubin 1, William K Cullen 1, Roger Anwyl 1
PMCID: PMC1693153  PMID: 12740129

Abstract

Amyloid beta-protein (Abeta) is believed to be a primary cause of Alzheimer's disease (AD). Recent research has examined the potential importance of soluble species of Abeta in synaptic dysfunction, long before fibrillary Abeta is deposited and neurodegenerative changes occur. Hippocampal excitatory synaptic transmission and plasticity are disrupted in transgenic mice overexpressing human amyloid precursor protein with early onset familial AD mutations, and in rats after exogenous application of synthetic Abeta both in vitro and in vivo. Recently, naturally produced soluble Abeta was shown to block the persistence of long-term potentiation (LTP) in the intact hippocampus. Sub-nanomolar concentrations of oligomeric Abeta were sufficient to inhibit late LTP, pointing to a possible reason for the sensitivity of hippocampus-dependent memory to impairment in the early preclinical stages of AD. Having identified the active species of Abeta that can play havoc with synaptic plasticity, it is hoped that new ways of targeting early AD can be developed.

Full Text

The Full Text of this article is available as a PDF (251.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendt T., Brückner M. K., Gertz H. J., Marcova L. Cortical distribution of neurofibrillary tangles in Alzheimer's disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience. 1998 Apr;83(4):991–1002. doi: 10.1016/s0306-4522(97)00509-5. [DOI] [PubMed] [Google Scholar]
  2. Arendt T. Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer's disease. Int J Dev Neurosci. 2001 Jun;19(3):231–245. doi: 10.1016/s0736-5748(01)00007-7. [DOI] [PubMed] [Google Scholar]
  3. Ashe K. H. Learning and memory in transgenic mice modeling Alzheimer's disease. Learn Mem. 2001 Nov-Dec;8(6):301–308. doi: 10.1101/lm.43701. [DOI] [PubMed] [Google Scholar]
  4. Auld Daniel S., Kornecook Tom J., Bastianetto Stéphane, Quirion Rémi. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002 Oct;68(3):209–245. doi: 10.1016/s0301-0082(02)00079-5. [DOI] [PubMed] [Google Scholar]
  5. Barrow P. A., Empson R. M., Gladwell S. J., Anderson C. M., Killick R., Yu X., Jefferys J. G., Duff K. Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol Dis. 2000 Apr;7(2):119–126. doi: 10.1006/nbdi.1999.0276. [DOI] [PubMed] [Google Scholar]
  6. Bear Mark F. Bidirectional synaptic plasticity: from theory to reality. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):649–655. doi: 10.1098/rstb.2002.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bi X., Gall C. M., Zhou J., Lynch G. Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience. 2002;112(4):827–840. doi: 10.1016/s0306-4522(02)00132-x. [DOI] [PubMed] [Google Scholar]
  8. Bozon Bruno, Kelly Aine, Josselyn Sheena A., Silva Alcino J., Davis Sabrina, Laroche Serge. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):805–814. doi: 10.1098/rstb.2002.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chapman P. F., Falinska A. M., Knevett S. G., Ramsay M. F. Genes, models and Alzheimer's disease. Trends Genet. 2001 May;17(5):254–261. doi: 10.1016/s0168-9525(01)02285-5. [DOI] [PubMed] [Google Scholar]
  10. Chapman P. F., White G. L., Jones M. W., Cooper-Blacketer D., Marshall V. J., Irizarry M., Younkin L., Good M. A., Bliss T. V., Hyman B. T. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci. 1999 Mar;2(3):271–276. doi: 10.1038/6374. [DOI] [PubMed] [Google Scholar]
  11. Chen Q. S., Kagan B. L., Hirakura Y., Xie C. W. Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res. 2000 Apr 1;60(1):65–72. doi: 10.1002/(SICI)1097-4547(20000401)60:1<65::AID-JNR7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  12. Chen Qi-Sheng, Wei Wei-Zheng, Shimahara Takeshi, Xie Cui-Wei. Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol Learn Mem. 2002 May;77(3):354–371. doi: 10.1006/nlme.2001.4034. [DOI] [PubMed] [Google Scholar]
  13. Cullen W. K., Suh Y. H., Anwyl R., Rowan M. J. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport. 1997 Oct 20;8(15):3213–3217. doi: 10.1097/00001756-199710200-00006. [DOI] [PubMed] [Google Scholar]
  14. Cullen W. K., Wu J., Anwyl R., Rowan M. J. beta-Amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. Neuroreport. 1996 Dec 20;8(1):87–92. doi: 10.1097/00001756-199612200-00018. [DOI] [PubMed] [Google Scholar]
  15. Dawson G. R., Seabrook G. R., Zheng H., Smith D. W., Graham S., O'Dowd G., Bowery B. J., Boyce S., Trumbauer M. E., Chen H. Y. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience. 1999 Apr;90(1):1–13. doi: 10.1016/s0306-4522(98)00410-2. [DOI] [PubMed] [Google Scholar]
  16. Dewachter Ilse, Reversé Delphine, Caluwaerts Nathalie, Ris Laurence, Kuipéri Cuno, Van den Haute Chris, Spittaels Kurt, Umans Lieve, Serneels Lutgarde, Thiry Els. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci. 2002 May 1;22(9):3445–3453. doi: 10.1523/JNEUROSCI.22-09-03445.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dineley K. T., Westerman M., Bui D., Bell K., Ashe K. H., Sweatt J. D. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci. 2001 Jun 15;21(12):4125–4133. doi: 10.1523/JNEUROSCI.21-12-04125.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., Ward P. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990 Jun 1;248(4959):1122–1124. doi: 10.1126/science.2111583. [DOI] [PubMed] [Google Scholar]
  19. Fitzjohn S. M., Morton R. A., Kuenzi F., Davies C. H., Seabrook G. R., Collingridge G. L. Similar levels of long-term potentiation in amyloid precursor protein -null and wild-type mice in the CA1 region of picrotoxin treated slices. Neurosci Lett. 2000 Jul 7;288(1):9–12. doi: 10.1016/s0304-3940(00)01204-0. [DOI] [PubMed] [Google Scholar]
  20. Fitzjohn S. M., Morton R. A., Kuenzi F., Rosahl T. W., Shearman M., Lewis H., Smith D., Reynolds D. S., Davies C. H., Collingridge G. L. Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein. J Neurosci. 2001 Jul 1;21(13):4691–4698. doi: 10.1523/JNEUROSCI.21-13-04691.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Frazier C. J., Rollins Y. D., Breese C. R., Leonard S., Freedman R., Dunwiddie T. V. Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci. 1998 Feb 15;18(4):1187–1195. doi: 10.1523/JNEUROSCI.18-04-01187.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Freir D. B., Holscher C., Herron C. E. Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J Neurophysiol. 2001 Feb;85(2):708–713. doi: 10.1152/jn.2001.85.2.708. [DOI] [PubMed] [Google Scholar]
  23. Giacchino J., Criado J. R., Games D., Henriksen S. In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res. 2000 Sep 8;876(1-2):185–190. doi: 10.1016/s0006-8993(00)02615-9. [DOI] [PubMed] [Google Scholar]
  24. Glenner G. G., Wong C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1131–1135. doi: 10.1016/0006-291x(84)91209-9. [DOI] [PubMed] [Google Scholar]
  25. Hardy John, Selkoe Dennis J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002 Jul 19;297(5580):353–356. doi: 10.1126/science.1072994. [DOI] [PubMed] [Google Scholar]
  26. Hoshi M., Takashima A., Murayama M., Yasutake K., Yoshida N., Ishiguro K., Hoshino T., Imahori K. Nontoxic amyloid beta peptide 1-42 suppresses acetylcholine synthesis. Possible role in cholinergic dysfunction in Alzheimer's disease. J Biol Chem. 1997 Jan 24;272(4):2038–2041. doi: 10.1074/jbc.272.4.2038. [DOI] [PubMed] [Google Scholar]
  27. Hsia A. Y., Masliah E., McConlogue L., Yu G. Q., Tatsuno G., Hu K., Kholodenko D., Malenka R. C., Nicoll R. A., Mucke L. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3228–3233. doi: 10.1073/pnas.96.6.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hédou Gaël, Mansuy Isabelle M. Inducible molecular switches for the study of long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):797–804. doi: 10.1098/rstb.2002.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Itoh A., Akaike T., Sokabe M., Nitta A., Iida R., Olariu A., Yamada K., Nabeshima T. Impairments of long-term potentiation in hippocampal slices of beta-amyloid-infused rats. Eur J Pharmacol. 1999 Oct 15;382(3):167–175. doi: 10.1016/s0014-2999(99)00601-9. [DOI] [PubMed] [Google Scholar]
  30. Janus C., Chishti M. A., Westaway D. Transgenic mouse models of Alzheimer's disease. Biochim Biophys Acta. 2000 Jul 26;1502(1):63–75. doi: 10.1016/s0925-4439(00)00033-8. [DOI] [PubMed] [Google Scholar]
  31. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K., Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987 Feb 19;325(6106):733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  32. Kelly J. F., Furukawa K., Barger S. W., Rengen M. R., Mark R. J., Blanc E. M., Roth G. S., Mattson M. P. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6753–6758. doi: 10.1073/pnas.93.13.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kim J. H., Anwyl R., Suh Y. H., Djamgoz M. B., Rowan M. J. Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci. 2001 Feb 15;21(4):1327–1333. doi: 10.1523/JNEUROSCI.21-04-01327.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Laakso Mikko P. Structural imaging in cognitive impairment and the dementias: an update. Curr Opin Neurol. 2002 Aug;15(4):415–421. doi: 10.1097/00019052-200208000-00003. [DOI] [PubMed] [Google Scholar]
  35. Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6448–6453. doi: 10.1073/pnas.95.11.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Larson J., Lynch G., Games D., Seubert P. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res. 1999 Sep 4;840(1-2):23–35. doi: 10.1016/s0006-8993(99)01698-4. [DOI] [PubMed] [Google Scholar]
  37. Lin L. H., Bock S., Carpenter K., Rose M., Norden J. J. Synthesis and transport of GAP-43 in entorhinal cortex neurons and perforant pathway during lesion-induced sprouting and reactive synaptogenesis. Brain Res Mol Brain Res. 1992 Jun;14(1-2):147–153. doi: 10.1016/0169-328x(92)90024-6. [DOI] [PubMed] [Google Scholar]
  38. Lisman John. Long-term potentiation: outstanding questions and attempted synthesis. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):829–842. doi: 10.1098/rstb.2002.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lue L. F., Kuo Y. M., Roher A. E., Brachova L., Shen Y., Sue L., Beach T., Kurth J. H., Rydel R. E., Rogers J. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999 Sep;155(3):853–862. doi: 10.1016/s0002-9440(10)65184-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McLean C. A., Cherny R. A., Fraser F. W., Fuller S. J., Smith M. J., Beyreuther K., Bush A. I., Masters C. L. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol. 1999 Dec;46(6):860–866. doi: 10.1002/1531-8249(199912)46:6<860::aid-ana8>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  41. Mesulam M. M. Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron. 1999 Nov;24(3):521–529. doi: 10.1016/s0896-6273(00)81109-5. [DOI] [PubMed] [Google Scholar]
  42. Moechars D., Dewachter I., Lorent K., Reversé D., Baekelandt V., Naidu A., Tesseur I., Spittaels K., Haute C. V., Checler F. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem. 1999 Mar 5;274(10):6483–6492. doi: 10.1074/jbc.274.10.6483. [DOI] [PubMed] [Google Scholar]
  43. Morris Richard G. M. Long-term potentiation and memory. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):643–647. doi: 10.1098/rstb.2002.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Morton Robin A., Kuenzi Frederick M., Fitzjohn Stephen M., Rosahl Thomas W., Smith David, Zheng Hui, Shearman Mark, Collingridge Graham L., Seabrook Guy R. Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimer's disease related gene presenilin-1. Neurosci Lett. 2002 Feb 8;319(1):37–40. doi: 10.1016/s0304-3940(01)02512-5. [DOI] [PubMed] [Google Scholar]
  45. Nakagami Yasuhiro, Oda Tomiichiro. Glutamate exacerbates amyloid beta1-42-induced impairment of long-term potentiation in rat hippocampal slices. Jpn J Pharmacol. 2002 Feb;88(2):223–226. doi: 10.1254/jjp.88.223. [DOI] [PubMed] [Google Scholar]
  46. Nalbantoglu J., Tirado-Santiago G., Lahsaïni A., Poirier J., Goncalves O., Verge G., Momoli F., Welner S. A., Massicotte G., Julien J. P. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature. 1997 May 29;387(6632):500–505. doi: 10.1038/387500a0. [DOI] [PubMed] [Google Scholar]
  47. Okuno H., Tokuyama W., Li Y. X., Hashimoto T., Miyashita Y. Quantitative evaluation of neurotrophin and trk mRNA expression in visual and limbic areas along the occipito-temporo-hippocampal pathway in adult macaque monkeys. J Comp Neurol. 1999 Jun 7;408(3):378–398. [PubMed] [Google Scholar]
  48. Parent A., Linden D. J., Sisodia S. S., Borchelt D. R. Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis. 1999 Feb;6(1):56–62. doi: 10.1006/nbdi.1998.0207. [DOI] [PubMed] [Google Scholar]
  49. Pike C. J., Walencewicz-Wasserman A. J., Kosmoski J., Cribbs D. H., Glabe C. G., Cotman C. W. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem. 1995 Jan;64(1):253–265. doi: 10.1046/j.1471-4159.1995.64010253.x. [DOI] [PubMed] [Google Scholar]
  50. Pittenger Christopher, Kandel Eric R. In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):757–763. doi: 10.1098/rstb.2002.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Richardson James A., Burns Dennis K. Mouse models of Alzheimer's disease: a quest for plaques and tangles. ILAR J. 2002;43(2):89–99. doi: 10.1093/ilar.43.2.89. [DOI] [PubMed] [Google Scholar]
  52. Saleshando G., O'Connor J. J. SB203580, the p38 mitogen-activated protein kinase inhibitor blocks the inhibitory effect of beta-amyloid on long-term potentiation in the rat hippocampus. Neurosci Lett. 2000 Jul 14;288(2):119–122. doi: 10.1016/s0304-3940(00)01210-6. [DOI] [PubMed] [Google Scholar]
  53. Seabrook G. R., Smith D. W., Bowery B. J., Easter A., Reynolds T., Fitzjohn S. M., Morton R. A., Zheng H., Dawson G. R., Sirinathsinghji D. J. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology. 1999 Mar;38(3):349–359. doi: 10.1016/s0028-3908(98)00204-4. [DOI] [PubMed] [Google Scholar]
  54. Selkoe Dennis J. Alzheimer's disease is a synaptic failure. Science. 2002 Oct 25;298(5594):789–791. doi: 10.1126/science.1074069. [DOI] [PubMed] [Google Scholar]
  55. Seubert P., Oltersdorf T., Lee M. G., Barbour R., Blomquist C., Davis D. L., Bryant K., Fritz L. C., Galasko D., Thal L. J. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature. 1993 Jan 21;361(6409):260–263. doi: 10.1038/361260a0. [DOI] [PubMed] [Google Scholar]
  56. Stéphan A., Laroche S., Davis S. Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci. 2001 Aug 1;21(15):5703–5714. doi: 10.1523/JNEUROSCI.21-15-05703.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sun Miao-Kun, Alkon Daniel L. Impairment of hippocampal CA1 heterosynaptic transformation and spatial memory by beta-amyloid(25-35). J Neurophysiol. 2002 May;87(5):2441–2449. doi: 10.1152/jn.00230.2001. [DOI] [PubMed] [Google Scholar]
  58. Tonegawa Susumu, Nakazawa Kazu, Wilson Matthew A. Genetic neuroscience of mammalian learning and memory. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):787–795. doi: 10.1098/rstb.2002.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Walsh Dominic M., Klyubin Igor, Fadeeva Julia V., Cullen William K., Anwyl Roger, Wolfe Michael S., Rowan Michael J., Selkoe Dennis J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002 Apr 4;416(6880):535–539. doi: 10.1038/416535a. [DOI] [PubMed] [Google Scholar]
  60. Wu J., Anwyl R., Rowan M. J. beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport. 1995 Nov 27;6(17):2409–2413. doi: 10.1097/00001756-199511270-00031. [DOI] [PubMed] [Google Scholar]
  61. Ye L., Qiao J. T. Suppressive action produced by beta-amyloid peptide fragment 31-35 on long-term potentiation in rat hippocampus is N-methyl-D-aspartate receptor-independent: it's offset by (-)huperzine A. Neurosci Lett. 1999 Nov 19;275(3):187–190. doi: 10.1016/s0304-3940(99)00795-8. [DOI] [PubMed] [Google Scholar]
  62. Yu H., Saura C. A., Choi S. Y., Sun L. D., Yang X., Handler M., Kawarabayashi T., Younkin L., Fedeles B., Wilson M. A. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001 Sep 13;31(5):713–726. doi: 10.1016/s0896-6273(01)00417-2. [DOI] [PubMed] [Google Scholar]
  63. Zaman S. H., Parent A., Laskey A., Lee M. K., Borchelt D. R., Sisodia S. S., Malinow R. Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer's disease mutation is normalized with a benzodiazepine. Neurobiol Dis. 2000 Feb;7(1):54–63. doi: 10.1006/nbdi.1999.0271. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES