Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Feb 29;359(1442):275–284. doi: 10.1098/rstb.2003.1391

Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.

Gay E McKinnon 1, Gregory J Jordan 1, René E Vaillancourt 1, Dorothy A Steane 1, Brad M Potts 1
PMCID: PMC1693314  PMID: 15101583

Abstract

Tasmania is a natural laboratory for investigating the evolutionary processes of the Quaternary. It is a large island lying 40-44 degrees S, which was repeatedly glaciated and linked to southeastern continental Australia during the Quaternary. Climate change promoted both the isolation of species in glacial refugia, and an exchange between Tasmanian and mainland floras. Eucalyptus is a complex and diverse genus, which has increased in abundance in Australia over the past 100 kyr, probably in response to higher fire frequency. Morphological evidence suggests that gene flow may have occurred between many eucalypt species after changes in their distribution during the Quaternary. This paper summarizes recent genetic evidence for migration and introgressive hybridization in Tasmanian Eucalyptus. Maternally inherited chloroplast DNA reveals a long-term persistence of eucalypts in southeastern Tasmanian refugia, coupled with introgressive hybridization involving many species. Detailed analysis of the widespread species Eucalyptus globulus suggests that migration from mainland Australia was followed by introgression involving a rare Tasmanian endemic. The data support the hypothesis that changes in distribution of interfertile species during the Quaternary have promoted reticulate evolution in Eucalyptus.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dumolin-Lapègue S., Demesure B., Fineschi S., Le Corre V., Petit R. J. Phylogeographic structure of white oaks throughout the European continent. Genetics. 1997 Aug;146(4):1475–1487. doi: 10.1093/genetics/146.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ferris C., Oliver R. P., Davy A. J., Hewitt G. M. Native oak chloroplasts reveal an ancient divide across Europe. Mol Ecol. 1993 Dec;2(6):337–344. doi: 10.1111/j.1365-294x.1993.tb00026.x. [DOI] [PubMed] [Google Scholar]
  3. Fuertes Aguilar J., Rosselló J. A., Nieto Feliner G. Molecular evidence for the compilospecies model of reticulate evolution in Armeria (Plumbaginaceae). Syst Biol. 1999 Dec;48(4):735–754. doi: 10.1080/106351599259997. [DOI] [PubMed] [Google Scholar]
  4. Golden J. L., Bain J. F. Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (asteraceae) species in southwestern Alberta. Evolution. 2000 Oct;54(5):1566–1579. doi: 10.1111/j.0014-3820.2000.tb00702.x. [DOI] [PubMed] [Google Scholar]
  5. Gutiérrez Larena B., Fuertes Aguilar J., Nieto Feliner G. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol. 2002 Oct;11(10):1965–1974. doi: 10.1046/j.1365-294x.2002.01594.x. [DOI] [PubMed] [Google Scholar]
  6. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000 Jun 22;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
  7. Lopez G. A., Potts B. M., Tilyard P. A. F1 hybrid inviability in eucalyptus: the case of E. ovata x E. globulus. Heredity (Edinb) 2000 Sep;85(Pt 3):242–250. doi: 10.1046/j.1365-2540.2000.00739.x. [DOI] [PubMed] [Google Scholar]
  8. McKinnon G. E., Vaillancourt R. E., Jackson H. D., Potts B. M. Chloroplast sharing in the Tasmanian eucalypts. Evolution. 2001 Apr;55(4):703–711. doi: 10.1554/0014-3820(2001)055[0703:csitte]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  9. Mckinnon A. E., Vaillancourt R. E., Tilyard P. A., Potts B. M. Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome. 2001 Oct;44(5):831–835. [PubMed] [Google Scholar]
  10. Petit R. J., Pineau E., Demesure B., Bacilieri R., Ducousso A., Kremer A. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9996–10001. doi: 10.1073/pnas.94.18.9996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Steane D. A., McKinnon G. E., Vaillancourt R. E., Potts B. M. ITS sequence data resolve higher level relationships among the eucalypts. Mol Phylogenet Evol. 1999 Jul;12(2):215–223. doi: 10.1006/mpev.1999.0612. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES