Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Apr 29;359(1444):689–698. doi: 10.1098/rstb.2003.1439

Biodiversity informatics: managing and applying primary biodiversity data.

Jorge Soberón 1, A Townsend Peterson 1
PMCID: PMC1693343  PMID: 15253354

Abstract

Recently, advances in information technology and an increased willingness to share primary biodiversity data are enabling unprecedented access to it. By combining presences of species data with electronic cartography via a number of algorithms, estimating niches of species and their areas of distribution becomes feasible at resolutions one to three orders of magnitude higher than it was possible a few years ago. Some examples of the power of that technique are presented. For the method to work, limitations such as lack of high-quality taxonomic determination, precise georeferencing of the data and availability of high-quality and updated taxonomic treatments of the groups must be overcome. These are discussed, together with comments on the potential of these biodiversity informatics techniques not only for fundamental studies but also as a way for developing countries to apply state of the art bioinformatic methods and large quantities of data, in practical ways, to tackle issues of biodiversity management.

Full Text

The Full Text of this article is available as a PDF (753.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy John. How many named species are valid? Proc Natl Acad Sci U S A. 2002 Mar 12;99(6):3706–3711. doi: 10.1073/pnas.062691099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bisby F. A. The quiet revolution: biodiversity informatics and the internet. Science. 2000 Sep 29;289(5488):2309–2312. doi: 10.1126/science.289.5488.2309. [DOI] [PubMed] [Google Scholar]
  3. Colwell R. K., Coddington J. A. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci. 1994 Jul 29;345(1311):101–118. doi: 10.1098/rstb.1994.0091. [DOI] [PubMed] [Google Scholar]
  4. Edwards J. L., Lane M. A., Nielsen E. S. Interoperability of biodiversity databases: biodiversity information on every desktop. Science. 2000 Sep 29;289(5488):2312–2314. doi: 10.1126/science.289.5488.2312. [DOI] [PubMed] [Google Scholar]
  5. Godfray H. Charles J. Challenges for taxonomy. Nature. 2002 May 2;417(6884):17–19. doi: 10.1038/417017a. [DOI] [PubMed] [Google Scholar]
  6. Gotelli Nicholas J. A taxonomic wish-list for community ecology. Philos Trans R Soc Lond B Biol Sci. 2004 Apr 29;359(1444):585–597. doi: 10.1098/rstb.2003.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graves GR. Costs and benefits of Web access to museum data. Trends Ecol Evol. 2000 Sep;15(9):374–374. doi: 10.1016/s0169-5347(00)01918-2. [DOI] [PubMed] [Google Scholar]
  8. Hebert Paul D. N., Cywinska Alina, Ball Shelley L., deWaard Jeremy R. Biological identifications through DNA barcodes. Proc Biol Sci. 2003 Feb 7;270(1512):313–321. doi: 10.1098/rspb.2002.2218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jetz Walter, Rahbek Carsten. Geographic range size and determinants of avian species richness. Science. 2002 Aug 30;297(5586):1548–1551. doi: 10.1126/science.1072779. [DOI] [PubMed] [Google Scholar]
  10. Lughadha Eimear Nic. Towards a working list of all known plant species. Philos Trans R Soc Lond B Biol Sci. 2004 Apr 29;359(1444):681–687. doi: 10.1098/rstb.2003.1446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pennisi Elizabeth. Modernizing the tree of life. Science. 2003 Jun 13;300(5626):1692–1697. doi: 10.1126/science.300.5626.1692. [DOI] [PubMed] [Google Scholar]
  12. Peterson A. Townsend, Ortega-Huerta Miguel A., Bartley Jeremy, Sánchez-Cordero Victor, Soberón Jorge, Buddemeier Robert H., Stockwell David R. B. Future projections for Mexican faunas under global climate change scenarios. Nature. 2002 Apr 11;416(6881):626–629. doi: 10.1038/416626a. [DOI] [PubMed] [Google Scholar]
  13. Peterson A. Townsend. Predicting the geography of species' invasions via ecological niche modeling. Q Rev Biol. 2003 Dec;78(4):419–433. doi: 10.1086/378926. [DOI] [PubMed] [Google Scholar]
  14. Peterson AT, Sober n J, Sanchez-Cordero V., V Conservatism of ecological niches in evolutionary time . Science. 1999 Aug 20;285(5431):1265–1267. doi: 10.1126/science.285.5431.1265. [DOI] [PubMed] [Google Scholar]
  15. Rahbek C., Graves G. R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proc Biol Sci. 2000 Nov 22;267(1459):2259–2265. doi: 10.1098/rspb.2000.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts Callum M., McClean Colin J., Veron John E. N., Hawkins Julie P., Allen Gerald R., McAllister Don E., Mittermeier Cristina G., Schueler Frederick W., Spalding Mark, Wells Fred. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science. 2002 Feb 15;295(5558):1280–1284. doi: 10.1126/science.1067728. [DOI] [PubMed] [Google Scholar]
  17. Samper Cristián. Taxonomy and environmental policy. Philos Trans R Soc Lond B Biol Sci. 2004 Apr 29;359(1444):721–728. doi: 10.1098/rstb.2004.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sánchez-Cordero V., Martínez-Meyer E. Museum specimen data predict crop damage by tropical rodents. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7074–7077. doi: 10.1073/pnas.110489897. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES