Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Full Text
The Full Text of this article is available as a PDF (611.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agnati L. F., Zoli M., Strömberg I., Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995 Dec;69(3):711–726. doi: 10.1016/0306-4522(95)00308-6. [DOI] [PubMed] [Google Scholar]
- Ahmadi Seifollah, Muth-Selbach Uta, Lauterbach Andreas, Lipfert Peter, Neuhuber Winfried L., Zeilhofer Hanns Ulrich. Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science. 2003 Jun 27;300(5628):2094–2097. doi: 10.1126/science.1083970. [DOI] [PubMed] [Google Scholar]
- Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994 Sep 1;347(1):150–160. doi: 10.1002/cne.903470112. [DOI] [PubMed] [Google Scholar]
- Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
- Allen A. K., Rosenberg H. The biosynthesis of D-serine ethanolamine phosphate in the earthworm Megascolides cameroni. Biochim Biophys Acta. 1968 Jan 10;152(1):208–210. doi: 10.1016/0005-2760(68)90022-2. [DOI] [PubMed] [Google Scholar]
- Aprison M. H., Shank R. P., Davidoff R. A. A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp Biochem Physiol. 1969 Mar;28(3):1345–1355. doi: 10.1016/0010-406x(69)90571-4. [DOI] [PubMed] [Google Scholar]
- Araque A., Parpura V., Sanzgiri R. P., Haydon P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999 May;22(5):208–215. doi: 10.1016/s0166-2236(98)01349-6. [DOI] [PubMed] [Google Scholar]
- Armstrong N., Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron. 2000 Oct;28(1):165–181. doi: 10.1016/s0896-6273(00)00094-5. [DOI] [PubMed] [Google Scholar]
- Armstrong N., Sun Y., Chen G. Q., Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature. 1998 Oct 29;395(6705):913–917. doi: 10.1038/27692. [DOI] [PubMed] [Google Scholar]
- Bach-y-Rita P. Nonsynaptic diffusion neurotransmission (NDN) in the brain. Neurochem Int. 1993 Oct;23(4):297–318. doi: 10.1016/0197-0186(93)90074-f. [DOI] [PubMed] [Google Scholar]
- Ballard Theresa M., Pauly-Evers Meike, Higgins Guy A., Ouagazzal Abdel-Mouttalib, Mutel Vincent, Borroni Edilio, Kemp John A., Bluethmann Horst, Kew James N. C. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci. 2002 Aug 1;22(15):6713–6723. doi: 10.1523/JNEUROSCI.22-15-06713.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banke Tue G., Traynelis Stephen F. Activation of NR1/NR2B NMDA receptors. Nat Neurosci. 2003 Feb;6(2):144–152. doi: 10.1038/nn1000. [DOI] [PubMed] [Google Scholar]
- Barañano D. E., Ferris C. D., Snyder S. H. Atypical neural messengers. Trends Neurosci. 2001 Feb;24(2):99–106. doi: 10.1016/s0166-2236(00)01716-1. [DOI] [PubMed] [Google Scholar]
- Barbour B., Häusser M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 1997 Sep;20(9):377–384. doi: 10.1016/s0166-2236(96)20050-5. [DOI] [PubMed] [Google Scholar]
- Beaudet A., Descarries L. The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience. 1978;3(10):851–860. doi: 10.1016/0306-4522(78)90115-x. [DOI] [PubMed] [Google Scholar]
- Benton Michael J., Ayala Francisco J. Dating the tree of life. Science. 2003 Jun 13;300(5626):1698–1700. doi: 10.1126/science.1077795. [DOI] [PubMed] [Google Scholar]
- Berger A. J., Dieudonné S., Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol. 1998 Dec;80(6):3336–3340. doi: 10.1152/jn.1998.80.6.3336. [DOI] [PubMed] [Google Scholar]
- Blanton M. G., Lo Turco J. J., Kriegstein A. R. Endogenous neurotransmitter activates N-methyl-D-aspartate receptors on differentiating neurons in embryonic cortex. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8027–8030. doi: 10.1073/pnas.87.20.8027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blouin J. L., Dombroski B. A., Nath S. K., Lasseter V. K., Wolyniec P. S., Nestadt G., Thornquist M., Ullrich G., McGrath J., Kasch L. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet. 1998 Sep;20(1):70–73. doi: 10.1038/1734. [DOI] [PubMed] [Google Scholar]
- Bristow D. R., Bowery N. G., Woodruff G. N. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol. 1986 Jul 31;126(3):303–307. doi: 10.1016/0014-2999(86)90062-2. [DOI] [PubMed] [Google Scholar]
- Brockie P. J., Mellem J. E., Hills T., Madsen D. M., Maricq A. V. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron. 2001 Aug 30;31(4):617–630. doi: 10.1016/s0896-6273(01)00394-4. [DOI] [PubMed] [Google Scholar]
- Brzustowicz L. M., Honer W. G., Chow E. W., Little D., Hogan J., Hodgkinson K., Bassett A. S. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet. 1999 Oct;65(4):1096–1103. doi: 10.1086/302579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brückner H., Becker D., Lüpke M. Chirality of amino acids of microorganisms used in food biotechnology. Chirality. 1993;5(5):385–392. doi: 10.1002/chir.530050521. [DOI] [PubMed] [Google Scholar]
- Brückner H., Westhauser T. Chromatographic determination of L- and D-amino acids in plants. Amino Acids. 2003;24(1-2):43–55. doi: 10.1007/s00726-002-0322-8. [DOI] [PubMed] [Google Scholar]
- Bunin M. A., Wightman R. M. Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci. 1999 Sep;22(9):377–382. doi: 10.1016/s0166-2236(99)01410-1. [DOI] [PubMed] [Google Scholar]
- Burgess M. F., Derby C. D. Two novel types of L-glutamate receptors with affinities for NMDA and L-cysteine in the olfactory organ of the Caribbean spiny lobster Panulirus argus. Brain Res. 1997 Oct 17;771(2):292–304. doi: 10.1016/s0006-8993(97)00816-0. [DOI] [PubMed] [Google Scholar]
- CORRIGAN J. J., WELLNER D., MEISTER A. Determination of D-amino acid oxidase activity in insect tissues using D-allohydroxyproline as substrate. Biochim Biophys Acta. 1963 May 7;73:50–56. doi: 10.1016/0006-3002(63)90358-5. [DOI] [PubMed] [Google Scholar]
- Campistron G., Buijs R. M., Geffard M. Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization. Brain Res. 1986 Jun 25;376(2):400–405. doi: 10.1016/0006-8993(86)90208-8. [DOI] [PubMed] [Google Scholar]
- Carone F. A., Ganote C. E. D-serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol. 1975 Dec;99(12):658–662. [PubMed] [Google Scholar]
- Cascella N. G., Macciardi F., Cavallini C., Smeraldi E. d-cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label study. J Neural Transm Gen Sect. 1994;95(2):105–111. doi: 10.1007/BF01276429. [DOI] [PubMed] [Google Scholar]
- Cathala L., Misra C., Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci. 2000 Aug 15;20(16):5899–5905. doi: 10.1523/JNEUROSCI.20-16-05899.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattaert D., Birman S. Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J Neurobiol. 2001 Jul;48(1):58–73. doi: 10.1002/neu.1042. [DOI] [PubMed] [Google Scholar]
- Chatterton Jon E., Awobuluyi Marc, Premkumar Louis S., Takahashi Hiroto, Talantova Maria, Shin Yeonsook, Cui Jiankun, Tu Shichun, Sevarino Kevin A., Nakanishi Nobuki. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002 Jan 30;415(6873):793–798. doi: 10.1038/nature715. [DOI] [PubMed] [Google Scholar]
- Chen G. Q., Cui C., Mayer M. L., Gouaux E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature. 1999 Dec 16;402(6763):817–821. doi: 10.1038/45568. [DOI] [PubMed] [Google Scholar]
- Chen Long, Muhlhauser Mark, Yang Charles R. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol. 2003 Feb;89(2):691–703. doi: 10.1152/jn.00680.2002. [DOI] [PubMed] [Google Scholar]
- Chiang Ann-Shyn, Lin Wei-Yong, Liu Hsin-Ping, Pszczolkowski Maciej A., Fu Tsai-Feng, Chiu Shu-Ling, Holbrook Glenn L. Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci U S A. 2002 Jan 2;99(1):37–42. doi: 10.1073/pnas.012318899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu J., DeSalle R., Lam H. M., Meisel L., Coruzzi G. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol. 1999 Jun;16(6):826–838. doi: 10.1093/oxfordjournals.molbev.a026167. [DOI] [PubMed] [Google Scholar]
- Chiu Joanna C., Brenner Eric D., DeSalle Rob, Nitabach Michael N., Holmes Todd C., Coruzzi Gloria M. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol. 2002 Jul;19(7):1066–1082. doi: 10.1093/oxfordjournals.molbev.a004165. [DOI] [PubMed] [Google Scholar]
- Chouinard M. L., Gaitan D., Wood P. L. Presence of the N-methyl-D-aspartate-associated glycine receptor agonist, D-serine, in human temporal cortex: comparison of normal, Parkinson, and Alzheimer tissues. J Neurochem. 1993 Oct;61(4):1561–1564. doi: 10.1111/j.1471-4159.1993.tb13657.x. [DOI] [PubMed] [Google Scholar]
- Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
- Cline H. T., Tsien R. W. Glutamate-induced increases in intracellular Ca2+ in cultured frog tectal cells mediated by direct activation of NMDA receptor channels. Neuron. 1991 Feb;6(2):259–267. doi: 10.1016/0896-6273(91)90361-3. [DOI] [PubMed] [Google Scholar]
- Conover J. C., Doetsch F., Garcia-Verdugo J. M., Gale N. W., Yancopoulos G. D., Alvarez-Buylla A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000 Nov;3(11):1091–1097. doi: 10.1038/80606. [DOI] [PubMed] [Google Scholar]
- Corrigan J. J. D-amino acids in animals. Science. 1969 Apr 11;164(3876):142–149. doi: 10.1126/science.164.3876.142. [DOI] [PubMed] [Google Scholar]
- Corrigan J. J., Srinivasan N. G. The occurrence of certain D-amino acids in insects. Biochemistry. 1966 Apr;5(4):1185–1190. doi: 10.1021/bi00868a010. [DOI] [PubMed] [Google Scholar]
- Coyle Joseph T., Tsai Guochuan, Goff Donald C. Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Targets CNS Neurol Disord. 2002 Apr;1(2):183–189. doi: 10.2174/1568007024606212. [DOI] [PubMed] [Google Scholar]
- Cull-Candy S. G., Brickley S. G., Misra C., Feldmeyer D., Momiyama A., Farrant M. NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacology. 1998 Oct-Nov;37(10-11):1369–1380. doi: 10.1016/s0028-3908(98)00119-1. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., Johnston D. A. Strychnine, glycine and vertebrate postsynaptic inhibition. Nature. 1970 Mar 28;225(5239):1258–1259. doi: 10.1038/2251258a0. [DOI] [PubMed] [Google Scholar]
- Czepita D., Daw N. W., Reid S. N. Glycine at the NMDA receptor in cat visual cortex: saturation and changes with age. J Neurophysiol. 1996 Jan;75(1):311–317. doi: 10.1152/jn.1996.75.1.311. [DOI] [PubMed] [Google Scholar]
- Dale N., Kandel E. R. L-glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7163–7167. doi: 10.1073/pnas.90.15.7163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly E. C., Nadi N. S., Aprison M. H. Regional distribution and properties of the glycine cleavage system within the central nervous system of the rat: evidence for an endogenous inhibitor during in vitro assay. J Neurochem. 1976 Jan;26(1):179–185. [PubMed] [Google Scholar]
- Dansen T. B., Wirtz K. W., Wanders R. J., Pap E. H. Peroxisomes in human fibroblasts have a basic pH. Nat Cell Biol. 2000 Jan;2(1):51–53. doi: 10.1038/71375. [DOI] [PubMed] [Google Scholar]
- Danysz W., Fadda E., Wroblewski J. T., Costa E. [3H]D-serine labels strychnine-insensitive glycine recognition sites of rat central nervous system. Life Sci. 1990;46(3):155–164. doi: 10.1016/0024-3205(90)90100-6. [DOI] [PubMed] [Google Scholar]
- Danysz W., Parsons C. G. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998 Dec;50(4):597–664. [PubMed] [Google Scholar]
- De Marchi W. J., Johnston G. A. The oxidation of glycine by D-amino acid oxidase in extracts of mammalian central nervous tissue. J Neurochem. 1969 Mar;16(3):355–361. doi: 10.1111/j.1471-4159.1969.tb10374.x. [DOI] [PubMed] [Google Scholar]
- De Souza M. M., Schenberg L. C., de Pádua Carobrez A. NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance. Behav Brain Res. 1998 Feb;90(2):157–165. doi: 10.1016/s0166-4328(97)00093-4. [DOI] [PubMed] [Google Scholar]
- DeFeudis F. V., Orensanz Muñoz L. M., Fando J. L. High-affinity glycine binding sites in rat CNS: regional variation and strychnine sensitivity. Gen Pharmacol. 1978;9(3):171–176. doi: 10.1016/0306-3623(78)90019-8. [DOI] [PubMed] [Google Scholar]
- Dingledine R., Borges K., Bowie D., Traynelis S. F. The glutamate receptor ion channels. Pharmacol Rev. 1999 Mar;51(1):7–61. [PubMed] [Google Scholar]
- Dupont J. L., Gardette R., Crepel F. Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Brain Res. 1987 Jul;431(1):59–68. doi: 10.1016/0165-3806(87)90195-7. [DOI] [PubMed] [Google Scholar]
- Ebralidze A. K., Rossi D. J., Tonegawa S., Slater N. T. Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci. 1996 Aug 15;16(16):5014–5025. doi: 10.1523/JNEUROSCI.16-16-05014.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmett M. R., Mick S. J., Cler J. A., Rao T. S., Iyengar S., Wood P. L. Actions of D-cycloserine at the N-methyl-D-aspartate-associated glycine receptor site in vivo. Neuropharmacology. 1991 Nov;30(11):1167–1171. doi: 10.1016/0028-3908(91)90161-4. [DOI] [PubMed] [Google Scholar]
- Espinosa L., Itzstein C., Cheynel H., Delmas P. D., Chenu C. Active NMDA glutamate receptors are expressed by mammalian osteoclasts. J Physiol. 1999 Jul 1;518(Pt 1):47–53. doi: 10.1111/j.1469-7793.1999.0047r.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evins A. E., Fitzgerald S. M., Wine L., Rosselli R., Goff D. C. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry. 2000 May;157(5):826–828. doi: 10.1176/appi.ajp.157.5.826. [DOI] [PubMed] [Google Scholar]
- Farrant M., Feldmeyer D., Takahashi T., Cull-Candy S. G. NMDA-receptor channel diversity in the developing cerebellum. Nature. 1994 Mar 24;368(6469):335–339. doi: 10.1038/368335a0. [DOI] [PubMed] [Google Scholar]
- Feinstein N., Parnas D., Parnas H., Dudel J., Parnas I. Functional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction. J Neurophysiol. 1998 Dec;80(6):2893–2899. doi: 10.1152/jn.1998.80.6.2893. [DOI] [PubMed] [Google Scholar]
- Ferraro T. N., Hare T. A. Free and conjugated amino acids in human CSF: influence of age and sex. Brain Res. 1985 Jul 8;338(1):53–60. doi: 10.1016/0006-8993(85)90247-1. [DOI] [PubMed] [Google Scholar]
- Fischer H. Animal evolution in the field of synaptic substances. Naturwissenschaften. 1972 Oct;59(10):425–435. doi: 10.1007/BF00592877. [DOI] [PubMed] [Google Scholar]
- Fox L. E., Lloyd P. E. Glutamate is a fast excitatory transmitter at some buccal neuromuscular synapses in Aplysia. J Neurophysiol. 1999 Sep;82(3):1477–1488. doi: 10.1152/jn.1999.82.3.1477. [DOI] [PubMed] [Google Scholar]
- Fukasawa Y., Segawa H., Kim J. Y., Chairoungdua A., Kim D. K., Matsuo H., Cha S. H., Endou H., Kanai Y. Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J Biol Chem. 2000 Mar 31;275(13):9690–9698. doi: 10.1074/jbc.275.13.9690. [DOI] [PubMed] [Google Scholar]
- Furukawa Hiroyasu, Gouaux Eric. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 2003 Jun 16;22(12):2873–2885. doi: 10.1093/emboj/cdg303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALAMBOS R. A glia-neural theory of brain function. Proc Natl Acad Sci U S A. 1961 Jan 15;47:129–136. doi: 10.1073/pnas.47.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo V., Patneau D. K., Mayer M. L., Vaccarino F. M. Excitatory amino acid receptors in glial progenitor cells: molecular and functional properties. Glia. 1994 Jun;11(2):94–101. doi: 10.1002/glia.440110204. [DOI] [PubMed] [Google Scholar]
- Gallo V., Russell J. T. Excitatory amino acid receptors in glia: different subtypes for distinct functions? J Neurosci Res. 1995 Sep 1;42(1):1–8. doi: 10.1002/jnr.490420102. [DOI] [PubMed] [Google Scholar]
- Ganote C. E., Peterson D. R., Carone F. A. The nature of D-serine--induced nephrotoxicity. Am J Pathol. 1974 Nov;77(2):269–282. [PMC free article] [PubMed] [Google Scholar]
- Garthwaite G., Yamini B., Jr, Garthwaite J. Selective loss of Purkinje and granule cell responsiveness to N-methyl-D-aspartate in rat cerebellum during development. Brain Res. 1987 Dec 1;433(2):288–292. doi: 10.1016/0165-3806(87)90034-4. [DOI] [PubMed] [Google Scholar]
- Gaunt G. L., de Duve C. Subcellular distribution of D-amino acid oxidase and catalase in rat brain. J Neurochem. 1976 Apr;26(4):749–759. doi: 10.1111/j.1471-4159.1976.tb04448.x. [DOI] [PubMed] [Google Scholar]
- Genever P. G., Wilkinson D. J., Patton A. J., Peet N. M., Hong Y., Mathur A., Erusalimsky J. D., Skerry T. M. Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood. 1999 May 1;93(9):2876–2883. [PubMed] [Google Scholar]
- Goff D. C., Coyle J. T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001 Sep;158(9):1367–1377. doi: 10.1176/appi.ajp.158.9.1367. [DOI] [PubMed] [Google Scholar]
- Goff D. C., Tsai G., Manoach D. S., Coyle J. T. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry. 1995 Aug;152(8):1213–1215. doi: 10.1176/ajp.152.8.1213. [DOI] [PubMed] [Google Scholar]
- Goldstein D. B. D-amino acid oxidase in brain: distribution in several species and inhibition by pentobarbitone. J Neurochem. 1966 Oct;13(10):1011–1016. doi: 10.1111/j.1471-4159.1966.tb10299.x. [DOI] [PubMed] [Google Scholar]
- Goldstein D. S., Lenders J. W., Kaler S. G., Eisenhofer G. Catecholamine phenotyping: clues to the diagnosis, treatment, and pathophysiology of neurogenetic disorders. J Neurochem. 1996 Nov;67(5):1781–1790. doi: 10.1046/j.1471-4159.1996.67051781.x. [DOI] [PubMed] [Google Scholar]
- Harrison P. J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999 Apr;122(Pt 4):593–624. doi: 10.1093/brain/122.4.593. [DOI] [PubMed] [Google Scholar]
- Harrison Paul J., Owen Michael J. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 2003 Feb 1;361(9355):417–419. doi: 10.1016/S0140-6736(03)12379-3. [DOI] [PubMed] [Google Scholar]
- Harvey-Girard Erik, Dunn Robert J. Excitatory amino acid receptors of the electrosensory system: the NR1/NR2B N-methyl-D-aspartate receptor. J Neurophysiol. 2003 Feb;89(2):822–832. doi: 10.1152/jn.00629.2002. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Kanda J., Oka T. Effects of N-methyl-D-aspartate, kainate or veratridine on extracellular concentrations of free D-serine and L-glutamate in rat striatum: an in vivo microdialysis study. Brain Res Bull. 2000 Oct;53(3):347–351. doi: 10.1016/s0361-9230(00)00357-9. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Kumashiro S., Nishikawa T., Oka T., Takahashi K., Mito T., Takashima S., Doi N., Mizutani Y., Yamazaki T. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J Neurochem. 1993 Jul;61(1):348–351. doi: 10.1111/j.1471-4159.1993.tb03575.x. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Nishikawa T., Hayashi T., Fujii N., Harada K., Oka T., Takahashi K. The presence of free D-serine in rat brain. FEBS Lett. 1992 Jan 13;296(1):33–36. doi: 10.1016/0014-5793(92)80397-y. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Nishikawa T., Konno R., Niwa A., Yasumura Y., Oka T., Takahashi K. Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant mice lacking D-amino acid oxidase. Neurosci Lett. 1993 Apr 2;152(1-2):33–36. doi: 10.1016/0304-3940(93)90476-2. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Nishikawa T., Oka T., Takahashi K. Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem. 1993 Feb;60(2):783–786. doi: 10.1111/j.1471-4159.1993.tb03219.x. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Oka T. Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol. 1997 Jul;52(4):325–353. doi: 10.1016/s0301-0082(97)00019-1. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Oka T., Nishikawa T. Anatomical distribution and postnatal changes in endogenous free D-aspartate and D-serine in rat brain and periphery. Eur J Neurosci. 1995 Aug 1;7(8):1657–1663. doi: 10.1111/j.1460-9568.1995.tb00687.x. [DOI] [PubMed] [Google Scholar]
- Hashimoto A., Oka T., Nishikawa T. Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience. 1995 Jun;66(3):635–643. doi: 10.1016/0306-4522(94)00597-x. [DOI] [PubMed] [Google Scholar]
- Hashimoto Atsushi. Effect of the intracerebroventricular and systemic administration of L-serine on the concentrations of D- and L-serine in several brain areas and periphery of rat. Brain Res. 2002 Nov 15;955(1-2):214–220. doi: 10.1016/s0006-8993(02)03466-2. [DOI] [PubMed] [Google Scholar]
- Hashimoto Kenji, Fukushima Takeshi, Shimizu Eiji, Komatsu Naoya, Watanabe Hiroyuki, Shinoda Naoyuki, Nakazato Michiko, Kumakiri Chikara, Okada Shin-ichi, Hasegawa Hisanori. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003 Jun;60(6):572–576. doi: 10.1001/archpsyc.60.6.572. [DOI] [PubMed] [Google Scholar]
- Hatanaka Takahiro, Huang Wei, Nakanishi Takeo, Bridges Christy C., Smith Sylvia B., Prasad Puttur D., Ganapathy Malliga E., Ganapathy Vadivel. Transport of D-serine via the amino acid transporter ATB(0,+) expressed in the colon. Biochem Biophys Res Commun. 2002 Feb 22;291(2):291–295. doi: 10.1006/bbrc.2002.6441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori Eiji, Liu Chunyu, Badner Judith A., Bonner Tom I., Christian Susan L., Maheshwari Manjula, Detera-Wadleigh Sevilla D., Gibbs Richard A., Gershon Elliot S. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet. 2003 Mar 19;72(5):1131–1140. doi: 10.1086/374822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi F., Takahashi K., Nishikawa T. Uptake of D- and L-serine in C6 glioma cells. Neurosci Lett. 1997 Dec 19;239(2-3):85–88. doi: 10.1016/s0304-3940(97)00892-6. [DOI] [PubMed] [Google Scholar]
- Heckmann M., Dudel J. Recordings of glutamate-gated ion channels in outside-out patches from Drosophila larval muscle. Neurosci Lett. 1995 Aug 18;196(1-2):53–56. doi: 10.1016/0304-3940(95)11836-l. [DOI] [PubMed] [Google Scholar]
- Heresco-Levy Uriel, Ermilov Marina, Shimoni Jonathan, Shapira Baruch, Silipo Gail, Javitt Daniel C. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry. 2002 Mar;159(3):480–482. doi: 10.1176/appi.ajp.159.3.480. [DOI] [PubMed] [Google Scholar]
- Herkenham M. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience. 1987 Oct;23(1):1–38. doi: 10.1016/0306-4522(87)90268-5. [DOI] [PubMed] [Google Scholar]
- Hirai H., Kirsch J., Laube B., Betz H., Kuhse J. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6031–6036. doi: 10.1073/pnas.93.12.6031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiike K., Tojo H., Arai R., Nozaki M., Maeda T. D-amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res. 1994 Aug 1;652(2):297–303. doi: 10.1016/0006-8993(94)90240-2. [DOI] [PubMed] [Google Scholar]
- Horiike K., Tojo H., Arai R., Yamano T., Nozaki M., Maeda T. Localization of D-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum. Brain Res Bull. 1987 Nov;19(5):587–596. doi: 10.1016/0361-9230(87)90076-1. [DOI] [PubMed] [Google Scholar]
- Huang Y., Nishikawa T., Satoh K., Iwata T., Fukushima T., Santa T., Homma H., Imai K. Urinary excretion of D-serine in human: comparison of different ages and species. Biol Pharm Bull. 1998 Feb;21(2):156–162. doi: 10.1248/bpb.21.156. [DOI] [PubMed] [Google Scholar]
- Imai K., Fukushima T., Santa T., Homma H., Huang Y., Shirao M., Miura K. Whole body autoradiographic study on the distribution of 14C-D-serine administered intravenously to rats. Amino Acids. 1998;15(4):351–361. doi: 10.1007/BF01320899. [DOI] [PubMed] [Google Scholar]
- Itzstein C., Cheynel H., Burt-Pichat B., Merle B., Espinosa L., Delmas P. D., Chenu C. Molecular identification of NMDA glutamate receptors expressed in bone cells. J Cell Biochem. 2001 Apr 2;82(1):134–144. doi: 10.1002/jcb.1114. [DOI] [PubMed] [Google Scholar]
- Iversen L. L. The Ferrier Lecture, 1983. Amino acids and peptides: fast and slow chemical signals in the nervous system? Proc R Soc Lond B Biol Sci. 1984 May 22;221(1224):245–260. doi: 10.1098/rspb.1984.0033. [DOI] [PubMed] [Google Scholar]
- Javitt D. C., Zylberman I., Zukin S. R., Heresco-Levy U., Lindenmayer J. P. Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry. 1994 Aug;151(8):1234–1236. doi: 10.1176/ajp.151.8.1234. [DOI] [PubMed] [Google Scholar]
- Javitt Daniel C., Balla Andrea, Sershen Henry. A novel alanine-insensitive D-serine transporter in rat brain synaptosomal membranes. Brain Res. 2002 Jun 21;941(1-2):146–149. doi: 10.1016/s0006-8993(02)02557-x. [DOI] [PubMed] [Google Scholar]
- Javitt Daniel C. Glycine modulators in schizophrenia. Curr Opin Investig Drugs. 2002 Jul;3(7):1067–1072. [PubMed] [Google Scholar]
- Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
- Jursky F., Nelson N. Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J Neurochem. 1996 Jul;67(1):336–344. doi: 10.1046/j.1471-4159.1996.67010336.x. [DOI] [PubMed] [Google Scholar]
- Kakizawa S., Yamasaki M., Watanabe M., Kano M. Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci. 2000 Jul 1;20(13):4954–4961. doi: 10.1523/JNEUROSCI.20-13-04954.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang Jiman, Turano Frank J. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2003 May 8;100(11):6872–6877. doi: 10.1073/pnas.1030961100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katagiri M., Tojo H., Horiike K., Yamano T. Immunochemical relationship of D-amino acid oxidases in various tissues and animals. Comp Biochem Physiol B. 1991;99(2):345–350. doi: 10.1016/0305-0491(91)90053-g. [DOI] [PubMed] [Google Scholar]
- Kew J. N., Koester A., Moreau J. L., Jenck F., Ouagazzal A. M., Mutel V., Richards J. G., Trube G., Fischer G., Montkowski A. Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci. 2000 Jun 1;20(11):4037–4049. doi: 10.1523/JNEUROSCI.20-11-04037.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto H., Simon J. R., Aprison M. H. Determination of the equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem. 1981 Oct;37(4):1015–1024. doi: 10.1111/j.1471-4159.1981.tb04489.x. [DOI] [PubMed] [Google Scholar]
- Kleckner N. W., Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988 Aug 12;241(4867):835–837. doi: 10.1126/science.2841759. [DOI] [PubMed] [Google Scholar]
- Konno R., Sasaki M., Asakura S., Fukui K., Enami J., Niwa A. D-amino-acid oxidase is not present in the mouse liver. Biochim Biophys Acta. 1997 Apr 17;1335(1-2):173–181. doi: 10.1016/s0304-4165(96)00136-5. [DOI] [PubMed] [Google Scholar]
- Kragh-Hansen U., Sheikh M. I. Serine uptake by luminal and basolateral membrane vesicles from rabbit kidney. J Physiol. 1984 Sep;354:55–67. doi: 10.1113/jphysiol.1984.sp015361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs Claudia, Fernandes Herman B., Sheldon Claire, Raymond Lynn A., Baimbridge Kenneth G. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci. 2003 Apr 15;23(8):3364–3372. doi: 10.1523/JNEUROSCI.23-08-03364.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krupa M., Crepel F. Transient Sensitivity of Rat Cerebellar Purkinje Cells to N-methyl-D-aspartate during Development. A Voltage Clamp Study in in vitro Slices. Eur J Neurosci. 1990;2(4):312–316. doi: 10.1111/j.1460-9568.1990.tb00423.x. [DOI] [PubMed] [Google Scholar]
- Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
- Kumashiro S., Hashimoto A., Nishikawa T. Free D-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseases. Brain Res. 1995 May 29;681(1-2):117–125. doi: 10.1016/0006-8993(95)00307-c. [DOI] [PubMed] [Google Scholar]
- Kuryatov A., Laube B., Betz H., Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994 Jun;12(6):1291–1300. doi: 10.1016/0896-6273(94)90445-6. [DOI] [PubMed] [Google Scholar]
- Kuusinen A., Arvola M., Keinänen K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 1995 Dec 15;14(24):6327–6332. doi: 10.1002/j.1460-2075.1995.tb00323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEWIS W. C., CALDEN G., THURSTON J. R., GILSON W. E. Psychiatric and neurological reactions to cycloserine in the treatment of tuberculosis. Dis Chest. 1957 Aug;32(2):172–182. doi: 10.1378/chest.32.2.172. [DOI] [PubMed] [Google Scholar]
- Lahti A. C., Koffel B., LaPorte D., Tamminga C. A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995 Aug;13(1):9–19. doi: 10.1016/0893-133X(94)00131-I. [DOI] [PubMed] [Google Scholar]
- Lam H. M., Chiu J., Hsieh M. H., Meisel L., Oliveira I. C., Shin M., Coruzzi G. Glutamate-receptor genes in plants. Nature. 1998 Nov 12;396(6707):125–126. doi: 10.1038/24066. [DOI] [PubMed] [Google Scholar]
- Laming P. R. Do glia contribute to behaviour? A neuromodulatory review. Comp Biochem Physiol A Comp Physiol. 1989;94(4):555–568. doi: 10.1016/0300-9629(89)90594-x. [DOI] [PubMed] [Google Scholar]
- Lampinen M., Pentikäinen O., Johnson M. S., Keinänen K. AMPA receptors and bacterial periplasmic amino acid-binding proteins share the ionic mechanism of ligand recognition. EMBO J. 1998 Aug 17;17(16):4704–4711. doi: 10.1093/emboj/17.16.4704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laube B., Hirai H., Sturgess M., Betz H., Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997 Mar;18(3):493–503. doi: 10.1016/s0896-6273(00)81249-0. [DOI] [PubMed] [Google Scholar]
- Laube B., Kuhse J., Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci. 1998 Apr 15;18(8):2954–2961. doi: 10.1523/JNEUROSCI.18-08-02954.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi G., Gallo V., Patrizio M. Release of exogenous and endogenous neurotransmitter amino acids from cultured astrocytes. Prog Brain Res. 1992;94:243–250. doi: 10.1016/s0079-6123(08)61754-9. [DOI] [PubMed] [Google Scholar]
- Levi G., Patrizio M. Astrocyte heterogeneity: endogenous amino acid levels and release evoked by non-N-methyl-D-aspartate receptor agonists and by potassium-induced swelling in type-1 and type-2 astrocytes. J Neurochem. 1992 May;58(5):1943–1952. doi: 10.1111/j.1471-4159.1992.tb10073.x. [DOI] [PubMed] [Google Scholar]
- Levinson D. F., Holmans P., Straub R. E., Owen M. J., Wildenauer D. B., Gejman P. V., Pulver A. E., Laurent C., Kendler K. S., Walsh D. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet. 2000 Aug 2;67(3):652–663. doi: 10.1086/303041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin M. W., Sham P., Hwu H. G., Collier D., Murray R., Powell J. F. Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Hum Genet. 1997 Mar;99(3):417–420. doi: 10.1007/s004390050382. [DOI] [PubMed] [Google Scholar]
- Lo E. H., Pierce A. R., Matsumoto K., Kano T., Evans C. J., Newcomb R. Alterations in K+ evoked profiles of neurotransmitter and neuromodulator amino acids after focal ischemia-reperfusion. Neuroscience. 1998 Mar;83(2):449–458. doi: 10.1016/s0306-4522(97)00434-x. [DOI] [PubMed] [Google Scholar]
- Logan W. J., Snyder S. H. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature. 1971 Dec 3;234(5327):297–299. doi: 10.1038/234297b0. [DOI] [PubMed] [Google Scholar]
- Madden Dean R. The structure and function of glutamate receptor ion channels. Nat Rev Neurosci. 2002 Feb;3(2):91–101. doi: 10.1038/nrn725. [DOI] [PubMed] [Google Scholar]
- Malinow Roberto. AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):707–714. doi: 10.1098/rstb.2002.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsui T., Sekiguchi M., Hashimoto A., Tomita U., Nishikawa T., Wada K. Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem. 1995 Jul;65(1):454–458. doi: 10.1046/j.1471-4159.1995.65010454.x. [DOI] [PubMed] [Google Scholar]
- McBride W. J., Daly E., Aprison M. H. Interconversion of glycine and serine in a synaptosome fraction isolated from the spinal cord, medulla oblongata, telencephalon, and cerebellum of the rat. J Neurobiol. 1973;4(6):557–566. doi: 10.1002/neu.480040608. [DOI] [PubMed] [Google Scholar]
- Mehta P. K., Christen P. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 2000;74:129–184. doi: 10.1002/9780470123201.ch4. [DOI] [PubMed] [Google Scholar]
- Millan M. J. N-methyl-D-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Targets CNS Neurol Disord. 2002 Apr;1(2):191–213. doi: 10.2174/1568007024606258. [DOI] [PubMed] [Google Scholar]
- Misra C., Brickley S. G., Wyllie D. J., Cull-Candy S. G. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. J Physiol. 2000 Jun 1;525(Pt 2):299–305. doi: 10.1111/j.1469-7793.2000.t01-1-00299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitoma J., Furuya S., Hirabayashi Y. A novel metabolic communication between neurons and astrocytes: non-essential amino acid L-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci Res. 1998 Feb;30(2):195–199. doi: 10.1016/s0168-0102(97)00113-2. [DOI] [PubMed] [Google Scholar]
- Miyazaki J., Nakanishi S., Jingami H. Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1. Biochem J. 1999 Jun 15;340(Pt 3):687–692. [PMC free article] [PubMed] [Google Scholar]
- Mohn A. R., Gainetdinov R. R., Caron M. G., Koller B. H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999 Aug 20;98(4):427–436. doi: 10.1016/s0092-8674(00)81972-8. [DOI] [PubMed] [Google Scholar]
- Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994 Mar;12(3):529–540. doi: 10.1016/0896-6273(94)90210-0. [DOI] [PubMed] [Google Scholar]
- Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P. H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992 May 22;256(5060):1217–1221. doi: 10.1126/science.256.5060.1217. [DOI] [PubMed] [Google Scholar]
- Moreno S., Nardacci R., Cimini A., Cerù M. P. Immunocytochemical localization of D-amino acid oxidase in rat brain. J Neurocytol. 1999 Mar;28(3):169–185. doi: 10.1023/a:1007064504007. [DOI] [PubMed] [Google Scholar]
- Moroz L. L., Györi J., Salánki J. NMDA-like receptors in the CNS of molluscs. Neuroreport. 1993 Feb;4(2):201–204. doi: 10.1097/00001756-199302000-00022. [DOI] [PubMed] [Google Scholar]
- Mothet J. P., Parent A. T., Wolosker H., Brady R. O., Jr, Linden D. J., Ferris C. D., Rogawski M. A., Snyder S. H. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4926–4931. doi: 10.1073/pnas.97.9.4926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder A. H., Snyder S. H. Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat. Brain Res. 1974 Aug 16;76(2):297–308. doi: 10.1016/0006-8993(74)90461-2. [DOI] [PubMed] [Google Scholar]
- Murray F., Kennedy J., Hutson P. H., Elliot J., Huscroft I., Mohnen K., Russell M. G., Grimwood S. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. Eur J Pharmacol. 2000 Jun 2;397(2-3):263–270. doi: 10.1016/s0014-2999(00)00263-6. [DOI] [PubMed] [Google Scholar]
- Müller C. M. A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. Int Rev Neurobiol. 1992;34:215–281. doi: 10.1016/s0074-7742(08)60099-9. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Horiike K., Maeda T. Distribution of free D-serine in vertebrate brains. Brain Res. 1994 Jan 21;634(2):291–295. doi: 10.1016/0006-8993(94)91932-1. [DOI] [PubMed] [Google Scholar]
- Nagata Y. Involvement of D-amino acid oxidase in elimination of D-serine in mouse brain. Experientia. 1992 Aug 15;48(8):753–755. doi: 10.1007/BF02124295. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Konno R., Yasumura Y., Akino T. Involvement of D-amino acid oxidase in elimination of free D-amino acids in mice. Biochem J. 1989 Jan 1;257(1):291–292. doi: 10.1042/bj2570291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagata Y., Tanaka K., Iida T., Kera Y., Yamada R., Nakajima Y., Fujiwara T., Fukumori Y., Yamanaka T., Koga Y. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta. 1999 Nov 16;1435(1-2):160–166. doi: 10.1016/s0167-4838(99)00208-3. [DOI] [PubMed] [Google Scholar]
- Nakanishi N., Shneider N. A., Axel R. A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron. 1990 Nov;5(5):569–581. doi: 10.1016/0896-6273(90)90212-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakauchi J., Matsuo H., Kim D. K., Goto A., Chairoungdua A., Cha S. H., Inatomi J., Shiokawa Y., Yamaguchi K., Saito I. Cloning and characterization of a human brain Na(+)-independent transporter for small neutral amino acids that transports D-serine with high affinity. Neurosci Lett. 2000 Jun 30;287(3):231–235. doi: 10.1016/s0304-3940(00)01169-1. [DOI] [PubMed] [Google Scholar]
- Nedergaard Maiken, Takano Takahiro, Hansen Anker J. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci. 2002 Sep;3(9):748–755. doi: 10.1038/nrn916. [DOI] [PubMed] [Google Scholar]
- Neidle Amos, Dunlop David S. Allosteric regulation of mouse brain serine racemase. Neurochem Res. 2002 Dec;27(12):1719–1724. doi: 10.1023/a:1021607715824. [DOI] [PubMed] [Google Scholar]
- Neims A. H., Zieverink W. D., Smilack J. D. Distribution of D-amino acid oxidase in bovine and human nervous tissues. J Neurochem. 1966 Mar;13(3):163–168. doi: 10.1111/j.1471-4159.1966.tb07508.x. [DOI] [PubMed] [Google Scholar]
- Nicholson C., Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998 May;21(5):207–215. doi: 10.1016/s0166-2236(98)01261-2. [DOI] [PubMed] [Google Scholar]
- Nilsson M., Carlsson A., Carlsson M. L. Glycine and D-serine decrease MK-801-induced hyperactivity in mice. J Neural Transm (Vienna) 1997;104(11-12):1195–1205. doi: 10.1007/BF01294720. [DOI] [PubMed] [Google Scholar]
- Nong Yi, Huang Yue-Qiao, Ju William, Kalia Lorraine V., Ahmadian Gholamreza, Wang Yu Tian, Salter Michael W. Glycine binding primes NMDA receptor internalization. Nature. 2003 Mar 20;422(6929):302–307. doi: 10.1038/nature01497. [DOI] [PubMed] [Google Scholar]
- O'Brien P. J., Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol. 1999 Apr;6(4):R91–R105. doi: 10.1016/S1074-5521(99)80033-7. [DOI] [PubMed] [Google Scholar]
- O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
- Obrenovitch T. P., Hardy A. M., Urenjak J. High extracellular glycine does not potentiate N-methyl-D-aspartate-evoked depolarization in vivo. Brain Res. 1997 Jan 23;746(1-2):190–194. doi: 10.1016/s0006-8993(96)01197-3. [DOI] [PubMed] [Google Scholar]
- Oldendorf W. H. Stereospecificity of blood-brain barrier permeability to amino acids. Am J Physiol. 1973 Apr;224(4):967–969. doi: 10.1152/ajplegacy.1973.224.4.967. [DOI] [PubMed] [Google Scholar]
- Olson M. V. When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet. 1999 Jan;64(1):18–23. doi: 10.1086/302219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paas Y., Devillers-Thiéry A., Teichberg V. I., Changeux J. P., Eisenstein M. How well can molecular modelling predict the crystal structure: the case of the ligand-binding domain of glutamate receptors. Trends Pharmacol Sci. 2000 Mar;21(3):87–92. doi: 10.1016/s0165-6147(99)01443-1. [DOI] [PubMed] [Google Scholar]
- Paas Y., Eisenstein M., Medevielle F., Teichberg V. I., Devillers-Thiéry A. Identification of the amino acid subsets accounting for the ligand binding specificity of a glutamate receptor. Neuron. 1996 Nov;17(5):979–990. doi: 10.1016/s0896-6273(00)80228-7. [DOI] [PubMed] [Google Scholar]
- Panizzutti R., De Miranda J., Ribeiro C. S., Engelender S., Wolosker H. A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5294–5299. doi: 10.1073/pnas.091002298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parveen Z., Large A., Grewal N., Lata N., Cancio I., Cajaraville M. P., Perry C. J., Connock M. J. D-Aspartate oxidase and D-amino acid oxidase are localised in the peroxisomes of terrestrial gastropods. Eur J Cell Biol. 2001 Oct;80(10):651–660. doi: 10.1078/0171-9335-00197. [DOI] [PubMed] [Google Scholar]
- Peretto P., Merighi A., Fasolo A., Bonfanti L. The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull. 1999 Jul 1;49(4):221–243. doi: 10.1016/s0361-9230(99)00037-4. [DOI] [PubMed] [Google Scholar]
- Petralia R. S., Wang Y. X., Wenthold R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci. 1994 Oct;14(10):6102–6120. doi: 10.1523/JNEUROSCI.14-10-06102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petralia R. S., Yokotani N., Wenthold R. J. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci. 1994 Feb;14(2):667–696. doi: 10.1523/JNEUROSCI.14-02-00667.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeiffer-Linn C., Glantz R. M. An arthropod NMDA receptor. Synapse. 1991 Sep;9(1):35–42. doi: 10.1002/syn.890090106. [DOI] [PubMed] [Google Scholar]
- Pierobon P., Minei R., Porcu P., Sogliano C., Tino A., Marino G., Biggio G., Concas A. Putative glycine receptors in Hydra: a biochemical and behavioural study. Eur J Neurosci. 2001 Nov;14(10):1659–1666. doi: 10.1046/j.0953-816x.2001.01792.x. [DOI] [PubMed] [Google Scholar]
- Pollegioni Loredano, Diederichs Kay, Molla Gianluca, Umhau Stephan, Welte Wolfram, Ghisla Sandro, Pilone Mirella S. Yeast D-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol. 2002 Nov 29;324(3):535–546. doi: 10.1016/s0022-2836(02)01062-8. [DOI] [PubMed] [Google Scholar]
- Potkin S. G., Jin Y., Bunney B. G., Costa J., Gulasekaram B. Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry. 1999 Jan;156(1):145–147. doi: 10.1176/ajp.156.1.145. [DOI] [PubMed] [Google Scholar]
- Priestley T., Laughton P., Myers J., Le Bourdellés B., Kerby J., Whiting P. J. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol. 1995 Nov;48(5):841–848. [PubMed] [Google Scholar]
- Pszczolkowski M. A., Lee W. S., Liu H. P., Chiang A. S. Glutamate-induced rise in cytosolic calcium concentration stimulates in vitro rates of juvenile hormone biosynthesis in corpus allatum of Diploptera punctata. Mol Cell Endocrinol. 1999 Dec 20;158(1-2):163–171. doi: 10.1016/s0303-7207(99)00167-7. [DOI] [PubMed] [Google Scholar]
- RUIZ SANCHEZ F., RUIZ SANCHEZ A., NARANJO GRANDA Q. F. E. Tetracycline in the treatment of typhoid fever. Antibiotic Med Clin Ther (New York) 1955 Jan;1(1):30–36. [PubMed] [Google Scholar]
- Rabacchi S., Bailly Y., Delhaye-Bouchaud N., Mariani J. Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science. 1992 Jun 26;256(5065):1823–1825. doi: 10.1126/science.1352066. [DOI] [PubMed] [Google Scholar]
- Rakic Pasko. Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex. 2003 Jun;13(6):541–549. doi: 10.1093/cercor/13.6.541. [DOI] [PubMed] [Google Scholar]
- Ribeiro Cátia S., Reis Marcelo, Panizzutti Rogério, de Miranda Joari, Wolosker Herman. Glial transport of the neuromodulator D-serine. Brain Res. 2002 Mar 8;929(2):202–209. doi: 10.1016/s0006-8993(01)03390-x. [DOI] [PubMed] [Google Scholar]
- Robinson T. D-amino acids in higher plants. Life Sci. 1976 Oct 15;19(8):1097–1102. doi: 10.1016/0024-3205(76)90244-7. [DOI] [PubMed] [Google Scholar]
- Rohrmann G. F., Karplus P. A. Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evol Biol. 2001 Feb 19;1:1–1. doi: 10.1186/1471-2148-1-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman S. M., Olney J. W. Excitotoxicity and the NMDA receptor--still lethal after eight years. Trends Neurosci. 1995 Feb;18(2):57–58. doi: 10.1016/0166-2236(95)93869-y. [DOI] [PubMed] [Google Scholar]
- Rusakov D. A., Kullmann D. M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8975–8980. doi: 10.1073/pnas.95.15.8975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SRINIVASAN N. G., CORRIGAN J. J., MEISTER A. BIOSYNTHESIS OF D-SERINE IN THE SILKWORM, BOMBYX MORI. J Biol Chem. 1965 Feb;240:796–800. [PubMed] [Google Scholar]
- Sandmeier E., Hale T. I., Christen P. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur J Biochem. 1994 May 1;221(3):997–1002. doi: 10.1111/j.1432-1033.1994.tb18816.x. [DOI] [PubMed] [Google Scholar]
- Sarower Mohammed Golam, Matsui Takashi, Abe Hiroki. Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues. J Exp Zool A Comp Exp Biol. 2003 Feb 1;295(2):151–159. doi: 10.1002/jez.a.10217. [DOI] [PubMed] [Google Scholar]
- Sato K., Yoshida S., Fujiwara K., Tada K., Tohyama M. Glycine cleavage system in astrocytes. Brain Res. 1991 Dec 13;567(1):64–70. doi: 10.1016/0006-8993(91)91436-5. [DOI] [PubMed] [Google Scholar]
- Savoca R., Ziegler U., Sonderegger P. Effects of L-serine on neurons in vitro. J Neurosci Methods. 1995 Sep-Oct;61(1-2):159–167. doi: 10.1016/0165-0270(95)00038-v. [DOI] [PubMed] [Google Scholar]
- Schell M. J., Brady R. O., Jr, Molliver M. E., Snyder S. H. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci. 1997 Mar 1;17(5):1604–1615. doi: 10.1523/JNEUROSCI.17-05-01604.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schell M. J., Cooper O. B., Snyder S. H. D-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2013–2018. doi: 10.1073/pnas.94.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schell M. J., Molliver M. E., Snyder S. H. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3948–3952. doi: 10.1073/pnas.92.9.3948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherzer C. R., Landwehrmeyer G. B., Kerner J. A., Standaert D. G., Hollingsworth Z. R., Daggett L. P., Veliçelebi G., Penney J. B., Jr, Young A. B. Cellular distribution of NMDA glutamate receptor subunit mRNAs in the human cerebellum. Neurobiol Dis. 1997;4(1):35–46. doi: 10.1006/nbdi.1997.0136. [DOI] [PubMed] [Google Scholar]
- Schmitt F. O. Molecular regulators of brain function: a new view. Neuroscience. 1984 Dec;13(4):991–1001. doi: 10.1016/0306-4522(84)90283-5. [DOI] [PubMed] [Google Scholar]
- Schousboe A., Westergaard N., Hertz L. Neuronal-astrocytic interactions in glutamate metabolism. Biochem Soc Trans. 1993 Feb;21(1):49–53. doi: 10.1042/bst0210049. [DOI] [PubMed] [Google Scholar]
- Shaw S. H., Kelly M., Smith A. B., Shields G., Hopkins P. J., Loftus J., Laval S. H., Vita A., De Hert M., Cardon L. R. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet. 1998 Sep 7;81(5):364–376. doi: 10.1002/(sici)1096-8628(19980907)81:5<364::aid-ajmg4>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Silbernagl S., Völker K., Dantzler W. H. D-Serine is reabsorbed in rat renal pars recta. Am J Physiol. 1999 Jun;276(6 Pt 2):F857–F863. doi: 10.1152/ajprenal.1999.276.6.F857. [DOI] [PubMed] [Google Scholar]
- Simeon J., Fink M., Itil T. M., Ponce D. d-Cycloserine therapy of psychosis by symptom provocation. Compr Psychiatry. 1970 Jan;11(1):80–88. doi: 10.1016/0010-440x(70)90207-5. [DOI] [PubMed] [Google Scholar]
- Skatchkov S., Brösamle C., Vyklický L., Kuffler D. P., Orkand R. K. NMDA receptors on adult frog spinal motoneurons in culture. Neurosci Lett. 1994 Aug 1;176(2):251–254. doi: 10.1016/0304-3940(94)90094-9. [DOI] [PubMed] [Google Scholar]
- Smith S. J. Do astrocytes process neural information? Prog Brain Res. 1992;94:119–136. doi: 10.1016/s0079-6123(08)61744-6. [DOI] [PubMed] [Google Scholar]
- Steele R. J., Dermon C. R., Stewart M. G. D-cycloserine causes transient enhancement of memory for a weak aversive stimulus in day-old chicks (Gallus domesticus). Neurobiol Learn Mem. 1996 Sep;66(2):236–240. doi: 10.1006/nlme.1996.0064. [DOI] [PubMed] [Google Scholar]
- Stern-Bach Y., Bettler B., Hartley M., Sheppard P. O., O'Hara P. J., Heinemann S. F. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron. 1994 Dec;13(6):1345–1357. doi: 10.1016/0896-6273(94)90420-0. [DOI] [PubMed] [Google Scholar]
- Stevens Eric R., Esguerra Manuel, Kim Paul M., Newman Eric A., Snyder Solomon H., Zahs Kathleen R., Miller Robert F. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6789–6794. doi: 10.1073/pnas.1237052100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strísovský Kvido, Jirásková Jana, Barinka Cyril, Majer Pavel, Rojas Camilo, Slusher Barbara S., Konvalinka Jan. Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate. FEBS Lett. 2003 Jan 30;535(1-3):44–48. doi: 10.1016/s0014-5793(02)03855-3. [DOI] [PubMed] [Google Scholar]
- Suzuki Satoshi O., Goldman James E. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci. 2003 May 15;23(10):4240–4250. doi: 10.1523/JNEUROSCI.23-10-04240.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K., Hayashi F., Nishikawa T. In vivo evidence for the link between L- and D-serine metabolism in rat cerebral cortex. J Neurochem. 1997 Sep;69(3):1286–1290. doi: 10.1046/j.1471-4159.1997.69031286.x. [DOI] [PubMed] [Google Scholar]
- Tam R., Saier M. H., Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 1993 Jun;57(2):320–346. doi: 10.1128/mr.57.2.320-346.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson C. L., Drewery D. L., Atkins H. D., Stephenson F. A., Chazot P. L. Immunohistochemical localization of N-methyl-D-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum. Neurosci Lett. 2000 Apr 7;283(2):85–88. doi: 10.1016/s0304-3940(00)00930-7. [DOI] [PubMed] [Google Scholar]
- Tsacopoulos M., Magistretti P. J. Metabolic coupling between glia and neurons. J Neurosci. 1996 Feb 1;16(3):877–885. doi: 10.1523/JNEUROSCI.16-03-00877.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai G. E., Yang P., Chung L. C., Tsai I. C., Tsai C. W., Coyle J. T. D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry. 1999 Nov;156(11):1822–1825. doi: 10.1176/ajp.156.11.1822. [DOI] [PubMed] [Google Scholar]
- Tsai G., Yang P., Chung L. C., Lange N., Coyle J. T. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998 Dec 1;44(11):1081–1089. doi: 10.1016/s0006-3223(98)00279-0. [DOI] [PubMed] [Google Scholar]
- Turano F. J., Panta G. R., Allard M. W., van Berkum P. The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms. Mol Biol Evol. 2001 Jul;18(7):1417–1420. doi: 10.1093/oxfordjournals.molbev.a003926. [DOI] [PubMed] [Google Scholar]
- Uo T., Yoshimura T., Shimizu S., Esaki N. Occurrence of pyridoxal 5'-phosphate-dependent serine racemase in silkworm, Bombyx mori. Biochem Biophys Res Commun. 1998 May 8;246(1):31–34. doi: 10.1006/bbrc.1998.8561. [DOI] [PubMed] [Google Scholar]
- Usuda N., Yokota S., Hashimoto T., Nagata T. Immunocytochemical localization of D-amino acid oxidase in the central clear matrix of rat kidney peroxisomes. J Histochem Cytochem. 1986 Dec;34(12):1709–1718. doi: 10.1177/34.12.2878022. [DOI] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Brees C., Mannaerts G. P. D-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. Biochim Biophys Acta. 1991 Jan 23;1073(1):203–208. doi: 10.1016/0304-4165(91)90203-s. [DOI] [PubMed] [Google Scholar]
- Varoqueaux Frederique, Sigler Albrecht, Rhee Jeong-Seop, Brose Nils, Enk Carsten, Reim Kerstin, Rosenmund Christian. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci U S A. 2002 Jun 17;99(13):9037–9042. doi: 10.1073/pnas.122623799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhage M., Maia A. S., Plomp J. J., Brussaard A. B., Heeroma J. H., Vermeer H., Toonen R. F., Hammer R. E., van den Berg T. K., Missler M. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000 Feb 4;287(5454):864–869. doi: 10.1126/science.287.5454.864. [DOI] [PubMed] [Google Scholar]
- Verrey François. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch. 2002 Nov 21;445(5):529–533. doi: 10.1007/s00424-002-0973-z. [DOI] [PubMed] [Google Scholar]
- Volpe J. J., Lee G., Laster L., Robinson J. C. Regional distribution of isozymes of D-amino-acid oxidase and acetylesterase in developing primate brain. Exp Neurol. 1970 Jul;28(1):76–87. doi: 10.1016/0014-4886(70)90163-9. [DOI] [PubMed] [Google Scholar]
- Wafford K. A., Kathoria M., Bain C. J., Marshall G., Le Bourdellès B., Kemp J. A., Whiting P. J. Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol. 1995 Feb;47(2):374–380. [PubMed] [Google Scholar]
- Wako K., Ma N., Shiroyama T., Semba R. Glial uptake of intracerebroventricularly injected D-serine in the rat brain: an immunocytochemical study. Neurosci Lett. 1995 Feb 13;185(3):171–174. doi: 10.1016/0304-3940(95)11253-s. [DOI] [PubMed] [Google Scholar]
- Wang D. Y., Kumar S., Hedges S. B. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999 Jan 22;266(1415):163–171. doi: 10.1098/rspb.1999.0617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weimar W. R., Neims A. H. The development of D-amino acid oxidase in rat cerebellum. J Neurochem. 1977 Oct;29(4):649–656. doi: 10.1111/j.1471-4159.1977.tb07782.x. [DOI] [PubMed] [Google Scholar]
- Westergren I., Nyström B., Hamberger A., Nordborg C., Johansson B. B. Concentrations of amino acids in extracellular fluid after opening of the blood-brain barrier by intracarotid infusion of protamine sulfate. J Neurochem. 1994 Jan;62(1):159–165. doi: 10.1046/j.1471-4159.1994.62010159.x. [DOI] [PubMed] [Google Scholar]
- Wilcox K. S., Fitzsimonds R. M., Johnson B., Dichter M. A. Glycine regulation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol. 1996 Nov;76(5):3415–3424. doi: 10.1152/jn.1996.76.5.3415. [DOI] [PubMed] [Google Scholar]
- Williams K., Chao J., Kashiwagi K., Masuko T., Igarashi K. Activation of N-methyl-D-aspartate receptors by glycine: role of an aspartate residue in the M3-M4 loop of the NR1 subunit. Mol Pharmacol. 1996 Oct;50(4):701–708. [PubMed] [Google Scholar]
- Wolosker H., Sheth K. N., Takahashi M., Mothet J. P., Brady R. O., Jr, Ferris C. D., Snyder S. H. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):721–725. doi: 10.1073/pnas.96.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood M. W., VanDongen H. M., VanDongen A. M. A mutation in the glycine binding pocket of the N-methyl-D-aspartate receptor NR1 subunit alters agonist efficacy. Brain Res Mol Brain Res. 1999 Nov 10;73(1-2):189–192. doi: 10.1016/s0169-328x(99)00247-8. [DOI] [PubMed] [Google Scholar]
- Wood M. W., VanDongen H. M., VanDongen A. M. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor. J Biol Chem. 1997 Feb 7;272(6):3532–3537. doi: 10.1074/jbc.272.6.3532. [DOI] [PubMed] [Google Scholar]
- Wood P. L. The co-agonist concept: is the NMDA-associated glycine receptor saturated in vivo? Life Sci. 1995;57(4):301–310. doi: 10.1016/0024-3205(95)00288-h. [DOI] [PubMed] [Google Scholar]
- Yamamoto N., Tomita U., Umino A., Nishikawa T. Uptake of D-serine by synaptosomal P2 fraction isolated from rat brain. Synapse. 2001 Nov;42(2):84–86. doi: 10.1002/syn.1103. [DOI] [PubMed] [Google Scholar]
- Yasuda E., Ma N., Semba R. Immunohistochemical evidences for localization and production of D-serine in some neurons in the rat brain. Neurosci Lett. 2001 Feb 16;299(1-2):162–164. doi: 10.1016/s0304-3940(01)01502-6. [DOI] [PubMed] [Google Scholar]
- Young A. B., Snyder S. H. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2832–2836. doi: 10.1073/pnas.70.10.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zafra F., Aragón C., Olivares L., Danbolt N. C., Giménez C., Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995 May;15(5 Pt 2):3952–3969. doi: 10.1523/JNEUROSCI.15-05-03952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Koning Tom J., Snell Keith, Duran Marinus, Berger Ruud, Poll-The Bwee-Tien, Surtees Robert. L-serine in disease and development. Biochem J. 2003 May 1;371(Pt 3):653–661. doi: 10.1042/BJ20021785. [DOI] [PMC free article] [PubMed] [Google Scholar]