Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Dec 29;359(1452):1931–1944. doi: 10.1098/rstb.2004.1563

Myosin VI: cellular functions and motor properties.

Rhys Roberts 1, Ida Lister 1, Stephan Schmitz 1, Matthew Walker 1, Claudia Veigel 1, John Trinick 1, Folma Buss 1, John Kendrick-Jones 1
PMCID: PMC1693462  PMID: 15647169

Abstract

Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguiar R. C., Yakushijin Y., Kharbanda S., Salgia R., Fletcher J. A., Shipp M. A. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. Blood. 2000 Dec 15;96(13):4328–4334. [PubMed] [Google Scholar]
  2. Altman David, Sweeney H. Lee, Spudich James A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell. 2004 Mar 5;116(5):737–749. doi: 10.1016/s0092-8674(04)00211-9. [DOI] [PubMed] [Google Scholar]
  3. Aschenbrenner Laura, Lee TinThu, Hasson Tama. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol Biol Cell. 2003 Mar 20;14(7):2728–2743. doi: 10.1091/mbc.E02-11-0767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avraham K. B., Hasson T., Sobe T., Balsara B., Testa J. R., Skvorak A. B., Morton C. C., Copeland N. G., Jenkins N. A. Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice. Hum Mol Genet. 1997 Aug;6(8):1225–1231. doi: 10.1093/hmg/6.8.1225. [DOI] [PubMed] [Google Scholar]
  5. Avraham K. B., Hasson T., Steel K. P., Kingsley D. M., Russell L. B., Mooseker M. S., Copeland N. G., Jenkins N. A. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet. 1995 Dec;11(4):369–375. doi: 10.1038/ng1295-369. [DOI] [PubMed] [Google Scholar]
  6. Bahloul Amel, Chevreux Guillaume, Wells Amber L., Martin Davy, Nolt Jocelyn, Yang Zhaohui, Chen Li-Qiong, Potier Noëlle, Van Dorsselaer Alain, Rosenfeld Steve. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc Natl Acad Sci U S A. 2004 Mar 22;101(14):4787–4792. doi: 10.1073/pnas.0306892101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bement W. M., Mooseker M. S. TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton. 1995;31(2):87–92. doi: 10.1002/cm.970310202. [DOI] [PubMed] [Google Scholar]
  8. Berg J. S., Powell B. C., Cheney R. E. A millennial myosin census. Mol Biol Cell. 2001 Apr;12(4):780–794. doi: 10.1091/mbc.12.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bretscher Anthony. Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J Cell Biol. 2003 Mar 17;160(6):811–816. doi: 10.1083/jcb.200301035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brodsky F. M., Chen C. Y., Knuehl C., Towler M. C., Wakeham D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol. 2001;17:517–568. doi: 10.1146/annurev.cellbio.17.1.517. [DOI] [PubMed] [Google Scholar]
  11. Brown S. S. Myosins in yeast. Curr Opin Cell Biol. 1997 Feb;9(1):44–48. doi: 10.1016/s0955-0674(97)80150-0. [DOI] [PubMed] [Google Scholar]
  12. Brzeska H., Knaus U. G., Wang Z. Y., Bokoch G. M., Korn E. D. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1092–1095. doi: 10.1073/pnas.94.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bunn R. C., Jensen M. A., Reed B. C. Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton. Mol Biol Cell. 1999 Apr;10(4):819–832. doi: 10.1091/mbc.10.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997 Apr 25;268(1):78–94. doi: 10.1006/jmbi.1997.0951. [DOI] [PubMed] [Google Scholar]
  15. Buss F., Arden S. D., Lindsay M., Luzio J. P., Kendrick-Jones J. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J. 2001 Jul 16;20(14):3676–3684. doi: 10.1093/emboj/20.14.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Buss F., Kendrick-Jones J., Lionne C., Knight A. E., Côté G. P., Paul Luzio J. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol. 1998 Dec 14;143(6):1535–1545. doi: 10.1083/jcb.143.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Craig R., Smith R., Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. 1983 Mar 31-Apr 6Nature. 302(5907):436–439. doi: 10.1038/302436a0. [DOI] [PubMed] [Google Scholar]
  18. Cramer L. P. Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility. Biochem Soc Symp. 1999;65:173–205. [PubMed] [Google Scholar]
  19. Gao Y., Li M., Chen W., Simons M. Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J Cell Physiol. 2000 Sep;184(3):373–379. doi: 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  20. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  21. Geisbrecht Erika R., Montell Denise J. Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol. 2002 Aug;4(8):616–620. doi: 10.1038/ncb830. [DOI] [PubMed] [Google Scholar]
  22. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  23. Hasson T., Gillespie P. G., Garcia J. A., MacDonald R. B., Zhao Y., Yee A. G., Mooseker M. S., Corey D. P. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol. 1997 Jun 16;137(6):1287–1307. doi: 10.1083/jcb.137.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hasson T., Mooseker M. S. Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol. 1994 Oct;127(2):425–440. doi: 10.1083/jcb.127.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hocevar B. A., Smine A., Xu X. X., Howe P. H. The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. EMBO J. 2001 Jun 1;20(11):2789–2801. doi: 10.1093/emboj/20.11.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hodge T., Cope M. J. A myosin family tree. J Cell Sci. 2000 Oct;113(Pt 19):3353–3354. doi: 10.1242/jcs.113.19.3353. [DOI] [PubMed] [Google Scholar]
  27. Holmes K. C. The swinging lever-arm hypothesis of muscle contraction. Curr Biol. 1997 Feb 1;7(2):R112–R118. doi: 10.1016/s0960-9822(06)00051-0. [DOI] [PubMed] [Google Scholar]
  28. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  29. Howard J., Hudspeth A. J., Vale R. D. Movement of microtubules by single kinesin molecules. Nature. 1989 Nov 9;342(6246):154–158. doi: 10.1038/342154a0. [DOI] [PubMed] [Google Scholar]
  30. Hume Alistair N., Collinson Lucy M., Hopkins Colin R., Strom Molly, Barral Duarte C., Bossi Giovanna, Griffiths Gillian M., Seabra Miguel C. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic. 2002 Mar;3(3):193–202. doi: 10.1034/j.1600-0854.2002.030305.x. [DOI] [PubMed] [Google Scholar]
  31. Inoue Akira, Saito Junya, Ikebe Reiko, Ikebe Mitsuo. Myosin IXb is a single-headed minus-end-directed processive motor. Nat Cell Biol. 2002 Apr;4(4):302–306. doi: 10.1038/ncb774. [DOI] [PubMed] [Google Scholar]
  32. Jensen O. N., Wilm M., Shevchenko A., Mann M. Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol Biol. 1999;112:513–530. doi: 10.1385/1-59259-584-7:513. [DOI] [PubMed] [Google Scholar]
  33. Kellerman K. A., Miller K. G. An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol. 1992 Nov;119(4):823–834. doi: 10.1083/jcb.119.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ladinsky M. S., Mastronarde D. N., McIntosh J. R., Howell K. E., Staehelin L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol. 1999 Mar 22;144(6):1135–1149. doi: 10.1083/jcb.144.6.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Langford G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol. 1995 Feb;7(1):82–88. doi: 10.1016/0955-0674(95)80048-4. [DOI] [PubMed] [Google Scholar]
  36. Lantz V. A., Miller K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J Cell Biol. 1998 Feb 23;140(4):897–910. doi: 10.1083/jcb.140.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lister Ida, Schmitz Stephan, Walker Matthew, Trinick John, Buss Folma, Veigel Claudia, Kendrick-Jones John. A monomeric myosin VI with a large working stroke. EMBO J. 2004 Mar 25;23(8):1729–1738. doi: 10.1038/sj.emboj.7600180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lou Xiaojing, McQuistan Tammie, Orlando Robert A., Farquhar Marilyn Gist. GAIP, GIPC and Galphai3 are concentrated in endocytic compartments of proximal tubule cells: putative role in regulating megalin's function. J Am Soc Nephrol. 2002 Apr;13(4):918–927. doi: 10.1681/ASN.V134918. [DOI] [PubMed] [Google Scholar]
  39. Mehta A. D., Rock R. S., Rief M., Spudich J. A., Mooseker M. S., Cheney R. E. Myosin-V is a processive actin-based motor. Nature. 1999 Aug 5;400(6744):590–593. doi: 10.1038/23072. [DOI] [PubMed] [Google Scholar]
  40. Mermall V., Post P. L., Mooseker M. S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science. 1998 Jan 23;279(5350):527–533. doi: 10.1126/science.279.5350.527. [DOI] [PubMed] [Google Scholar]
  41. Mitchison T. J., Cramer L. P. Actin-based cell motility and cell locomotion. Cell. 1996 Feb 9;84(3):371–379. doi: 10.1016/s0092-8674(00)81281-7. [DOI] [PubMed] [Google Scholar]
  42. Morris S. M., Cooper J. A. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic. 2001 Feb;2(2):111–123. doi: 10.1034/j.1600-0854.2001.020206.x. [DOI] [PubMed] [Google Scholar]
  43. Morris Shelli M., Arden Susan D., Roberts Rhys C., Kendrick-Jones John, Cooper Jonathan A., Luzio J. Paul, Buss Folma. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic. 2002 May;3(5):331–341. doi: 10.1034/j.1600-0854.2002.30503.x. [DOI] [PubMed] [Google Scholar]
  44. Nishikawa So, Homma Kazuaki, Komori Yasunori, Iwaki Mitsuhiro, Wazawa Tetsuichi, Hikikoshi Iwane Atsuko, Saito Junya, Ikebe Reiko, Katayama Eisaku, Yanagida Toshio. Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun. 2002 Jan 11;290(1):311–317. doi: 10.1006/bbrc.2001.6142. [DOI] [PubMed] [Google Scholar]
  45. O'Connell Christopher B., Mooseker Mark S. Native Myosin-IXb is a plus-, not a minus-end-directed motor. Nat Cell Biol. 2003 Feb;5(2):171–172. doi: 10.1038/ncb924. [DOI] [PubMed] [Google Scholar]
  46. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  47. Reck-Peterson S. L., Provance D. W., Jr, Mooseker M. S., Mercer J. A. Class V myosins. Biochim Biophys Acta. 2000 Mar 17;1496(1):36–51. doi: 10.1016/s0167-4889(00)00007-0. [DOI] [PubMed] [Google Scholar]
  48. Sans N., Racca C., Petralia R. S., Wang Y. X., McCallum J., Wenthold R. J. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J Neurosci. 2001 Oct 1;21(19):7506–7516. doi: 10.1523/JNEUROSCI.21-19-07506.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Self T., Sobe T., Copeland N. G., Jenkins N. A., Avraham K. B., Steel K. P. Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol. 1999 Oct 15;214(2):331–341. doi: 10.1006/dbio.1999.9424. [DOI] [PubMed] [Google Scholar]
  50. Sellers J. R. Myosins: a diverse superfamily. Biochim Biophys Acta. 2000 Mar 17;1496(1):3–22. doi: 10.1016/s0167-4889(00)00005-7. [DOI] [PubMed] [Google Scholar]
  51. Sells M. A., Boyd J. T., Chernoff J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol. 1999 May 17;145(4):837–849. doi: 10.1083/jcb.145.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Smith C. A., Rayment I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J. 1996 Apr;70(4):1590–1602. doi: 10.1016/S0006-3495(96)79745-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stephens D. J., Banting G. The use of yeast two-hybrid screens in studies of protein:protein interactions involved in trafficking. Traffic. 2000 Oct;1(10):763–768. doi: 10.1034/j.1600-0854.2000.011003.x. [DOI] [PubMed] [Google Scholar]
  54. Tomishige Michio, Klopfenstein Dieter R., Vale Ronald D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science. 2002 Sep 27;297(5590):2263–2267. doi: 10.1126/science.1073386. [DOI] [PubMed] [Google Scholar]
  55. Tsiavaliaris Georgios, Fujita-Becker Setsuko, Manstein Dietmar J. Molecular engineering of a backwards-moving myosin motor. Nature. 2004 Feb 5;427(6974):558–561. doi: 10.1038/nature02303. [DOI] [PubMed] [Google Scholar]
  56. Tzolovsky George, Millo Hadas, Pathirana Stephen, Wood Timothy, Bownes Mary. Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol Biol Evol. 2002 Jul;19(7):1041–1052. doi: 10.1093/oxfordjournals.molbev.a004163. [DOI] [PubMed] [Google Scholar]
  57. Vale Ronald D. The molecular motor toolbox for intracellular transport. Cell. 2003 Feb 21;112(4):467–480. doi: 10.1016/s0092-8674(03)00111-9. [DOI] [PubMed] [Google Scholar]
  58. Veigel C., Coluccio L. M., Jontes J. D., Sparrow J. C., Milligan R. A., Molloy J. E. The motor protein myosin-I produces its working stroke in two steps. Nature. 1999 Apr 8;398(6727):530–533. doi: 10.1038/19104. [DOI] [PubMed] [Google Scholar]
  59. Veigel Claudia, Wang Fei, Bartoo Marc L., Sellers James R., Molloy Justin E. The gated gait of the processive molecular motor, myosin V. Nat Cell Biol. 2002 Jan;4(1):59–65. doi: 10.1038/ncb732. [DOI] [PubMed] [Google Scholar]
  60. Wang Fei, Thirumurugan Kavitha, Stafford Walter F., Hammer John A., 3rd, Knight Peter J., Sellers James R. Regulated conformation of myosin V. J Biol Chem. 2003 Nov 22;279(4):2333–2336. doi: 10.1074/jbc.C300488200. [DOI] [PubMed] [Google Scholar]
  61. Warner Claire L., Stewart Abigail, Luzio J. Paul, Steel Karen P., Libby Richard T., Kendrick-Jones John, Buss Folma. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell's waltzer mice. EMBO J. 2003 Feb 3;22(3):569–579. doi: 10.1093/emboj/cdg055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wells A. L., Lin A. W., Chen L. Q., Safer D., Cain S. M., Hasson T., Carragher B. O., Milligan R. A., Sweeney H. L. Myosin VI is an actin-based motor that moves backwards. Nature. 1999 Sep 30;401(6752):505–508. doi: 10.1038/46835. [DOI] [PubMed] [Google Scholar]
  63. Wu Xufeng S., Rao Kang, Zhang Hong, Wang Fei, Sellers James R., Matesic Lydia E., Copeland Neal G., Jenkins Nancy A., Hammer John A., 3rd Identification of an organelle receptor for myosin-Va. Nat Cell Biol. 2002 Apr;4(4):271–278. doi: 10.1038/ncb760. [DOI] [PubMed] [Google Scholar]
  64. Xu X. X., Yi T., Tang B., Lambeth J. D. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene. 1998 Mar 26;16(12):1561–1569. doi: 10.1038/sj.onc.1201678. [DOI] [PubMed] [Google Scholar]
  65. Yamashita R. A., Sellers J. R., Anderson J. B. Identification and analysis of the myosin superfamily in Drosophila: a database approach. J Muscle Res Cell Motil. 2000;21(6):491–505. doi: 10.1023/a:1026589626422. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES