Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 Mar;31(3):389–394. doi: 10.1128/aem.31.3.389-394.1976

Relationships between heat resistance and phospholipid fatty acid composition of Vibrio parahaemolyticus.

L R Beuchat, R E Worthington
PMCID: PMC169784  PMID: 938034

Abstract

Vibrio parahaemolyticus was grown in tryptic soy broth (TSB) containing NaCl levels of 0.5, 3.0, and 7.5% (wt/vol). Cultures incubated at 21, 29, and 37 C were harvested in late exponential phases and thermal death times at 47 C (D47 c; time at 47 C required to reduce the viable population by 90%) were determined in phosphate buffer containing 0.5, 3.0, and 7.5% NaCl. At a given NaCl concentration in the growth medium, D47 c values increased with elevated incubation temperatures and with elevated levels of NaCl in the heating menstrua. Differences in thermal resistance of cells cultured at a particular temperature were greater between those grown in TSB containing 0.5 and 3.0% NaCl than between those grown in TSB containing 3.0 and 7.5% NaCl. D47c values ranged from 0.8 min (grown at 21 C in TSB with 0.5% NaCl) to 6.5 min (grown at 37 C in TSB with 7.5%, heated in 7.5% NaCl buffer). Methyl esters of major phospholipid fatty acids extracted from cells were quantitated. The ratio of saturated to unsaturated fatty acids in cells grown at a given NaCl concentration increased with elevated incubation temperature. At a particular growth temperature, however, saturated to unsaturated fatty acids ratios were lowest for cells grown in TSB containing 3.0% NaCl.

Full text

PDF
394

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Baird-Parker A. C., Boothroyd M., Jones E. The effect of water activity on the heat resistance of heat sensitive and heat resistant strains of salmonellae. J Appl Bacteriol. 1970 Sep;33(3):515–522. doi: 10.1111/j.1365-2672.1970.tb02228.x. [DOI] [PubMed] [Google Scholar]
  4. Beuchat L. R. Combined effects of water activity, solute, and temperature on the growth of Vibrio parahaemolyticus. Appl Microbiol. 1974 Jun;27(6):1075–1080. doi: 10.1128/am.27.6.1075-1080.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beuchat L. R. Interacting effects of pH, temperature, and salt concentration on growth and survival of Bibrio parahaemolyticus. Appl Microbiol. 1973 May;25(5):844–846. doi: 10.1128/am.25.5.844-846.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calhoun C. L., Frazier W. C. Effect of available water on thermal resistance of three nonsporeforming species of bacteria. Appl Microbiol. 1966 May;14(3):416–420. doi: 10.1128/am.14.3.416-420.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Covert D., Woodburn M. Relationships of temperature and sodium chloride concentration to the survival of Vibrio parahaemolyticus in broth and fish homogenate. Appl Microbiol. 1972 Feb;23(2):321–325. doi: 10.1128/am.23.2.321-325.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deneke C. F., Colwell R. R. Studies of the cell envelope of Vibrio parahaemolyticus. Can J Microbiol. 1973 Feb;19(2):241–245. doi: 10.1139/m73-036. [DOI] [PubMed] [Google Scholar]
  9. Galanos D. S., Kapoulas V. M., Voudouris E. C. Detection of adulteration of olive oil by argentation thin layer chromatography. J Am Oil Chem Soc. 1968 Dec;45(12):825–829. doi: 10.1007/BF02540162. [DOI] [PubMed] [Google Scholar]
  10. Hansen E. W. Correlation of fatty acid composition with thermal resistance of E. coli. Dan Tidsskr Farm. 1971;45(10):339–344. [PubMed] [Google Scholar]
  11. Hansen E. W., Skadhauge K. The influence of growth temperature on the thermal resistance of E. coli. Dan Tidsskr Farm. 1971;45(1):24–28. [PubMed] [Google Scholar]
  12. Heinen W., Klein H. P., Volkmann C. M. Fatty acid composition of Thermus aquaticus at different growth temperatures. Arch Mikrobiol. 1970;72(2):199–202. doi: 10.1007/BF00409525. [DOI] [PubMed] [Google Scholar]
  13. Jones D., Bowyer D. E., Gresham G. A., Howard A. N. An improved spray reagent for detecting lipids on thin-layer chromatograms. J Chromatogr. 1966 Jun;23(1):172–174. doi: 10.1016/s0021-9673(01)98665-0. [DOI] [PubMed] [Google Scholar]
  14. Kito M., Aibara S., Kato M., Hata T. Differences in fatty acid composition among phosphatidylethanolamine, phosphatidylglycerol and cardiolipin of Escherichia coli. Biochim Biophys Acta. 1972 Mar 23;260(3):475–478. doi: 10.1016/0005-2760(72)90062-8. [DOI] [PubMed] [Google Scholar]
  15. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Modak M. J., Nair S., Venkataraman A. Studies on the fatty acid composition of some salmonellas. J Gen Microbiol. 1970 Feb;60(2):151–157. doi: 10.1099/00221287-60-2-151. [DOI] [PubMed] [Google Scholar]
  17. Ray P. H., White D. C., Brock T. D. Effect of temperature on the fatty acid composition of Thermus aquaticus. J Bacteriol. 1971 Apr;106(1):25–30. doi: 10.1128/jb.106.1.25-30.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rietschel E. T., Palin W. J., Watson D. W. Nature and linkages of the fatty acids present in lipopolysaccharides from Vibrio metchnikovii and Vibrio parahemolyticus. Eur J Biochem. 1973 Aug 1;37(1):116–120. doi: 10.1111/j.1432-1033.1973.tb02965.x. [DOI] [PubMed] [Google Scholar]
  19. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sinensky M. Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol. 1971 May;106(2):449–455. doi: 10.1128/jb.106.2.449-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vanderzant C., Nickelson R. Survival of Vibrio parahaemolyticus in shrimp tissue under various environmental conditions. Appl Microbiol. 1972 Jan;23(1):34–37. doi: 10.1128/am.23.1.34-37.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Worthington R. E., Beuchat L. R. Alpha-galactosidase activity of fungi on intestinal gas-forming peanut oligosaccharides. J Agric Food Chem. 1974 Nov-Dec;22(6):1063–1066. doi: 10.1021/jf60196a011. [DOI] [PubMed] [Google Scholar]
  23. de Gier J., Mandersloot J. G., van Deenen L. L. Lipid composition and permeability of liposomes. Biochim Biophys Acta. 1968 Jun 11;150(4):666–675. doi: 10.1016/0005-2736(68)90056-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES