Abstract
Shaker K(+)-channels are one of several voltage-activated K(+)-channels expressed in Drosophila photoreceptors. We have shown recently that Shaker channels act as selective amplifiers, attenuating some signals while boosting others. Loss of these channels reduces the photoreceptor information capacity (bits s(-1)) and induces compensatory changes in photoreceptors enabling them to minimize the impact of this loss upon coding natural-like stimuli. Energy as well as coding is also an important consideration in understanding the role of ion channels in neural processing. Here, we use a simple circuit model that incorporates the major ion channels, pumps and exchangers of the photoreceptors to derive experimentally based estimates of the metabolic cost of neural information in wild-type (WT) and Shaker mutant photoreceptors. We show that in WT photoreceptors, which contain Shaker K(+)-channels, each bit of information costs approximately half the number of ATP molecules than each bit in Shaker photoreceptors, in which lack of the Shaker K(+)-channels is compensated by increased leak conductance. Additionally, using a Hodgkin-Huxley-type model coupled to the circuit model we show that the amount of leak present in both WT and Shaker photoreceptors is optimized to both maximize the available voltage range and minimize the metabolic cost.
Full Text
The Full Text of this article is available as a PDF (110.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D., Laughlin S. B. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001 Oct;21(10):1133–1145. doi: 10.1097/00004647-200110000-00001. [DOI] [PubMed] [Google Scholar]
- Delpire E. Cation-Chloride Cotransporters in Neuronal Communication. News Physiol Sci. 2000 Dec;15(NaN):309–312. doi: 10.1152/physiologyonline.2000.15.6.309. [DOI] [PubMed] [Google Scholar]
- Hardie R. C., Raghu P. Visual transduction in Drosophila. Nature. 2001 Sep 13;413(6852):186–193. doi: 10.1038/35093002. [DOI] [PubMed] [Google Scholar]
- Hardie R. C. Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci. 1991 Oct;11(10):3079–3095. doi: 10.1523/JNEUROSCI.11-10-03079.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie R. C., Voss D., Pongs O., Laughlin S. B. Novel potassium channels encoded by the Shaker locus in Drosophila photoreceptors. Neuron. 1991 Mar;6(3):477–486. doi: 10.1016/0896-6273(91)90255-x. [DOI] [PubMed] [Google Scholar]
- Hevers W., Hardie R. C. Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in Drosophila photoreceptors. Neuron. 1995 Apr;14(4):845–856. doi: 10.1016/0896-6273(95)90228-7. [DOI] [PubMed] [Google Scholar]
- Hoffman D. A., Magee J. C., Colbert C. M., Johnston D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 1997 Jun 26;387(6636):869–875. doi: 10.1038/43119. [DOI] [PubMed] [Google Scholar]
- Juusola M., Hardie R. C. Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. J Gen Physiol. 2001 Jan;117(1):3–25. doi: 10.1085/jgp.117.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan W. D., Trout W. E., 3rd The behavior of four neurological mutants of Drosophila. Genetics. 1969 Feb;61(2):399–409. doi: 10.1093/genetics/61.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laughlin S. B. Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol. 2001 Aug;11(4):475–480. doi: 10.1016/s0959-4388(00)00237-3. [DOI] [PubMed] [Google Scholar]
- Laughlin S. B., de Ruyter van Steveninck R. R., Anderson J. C. The metabolic cost of neural information. Nat Neurosci. 1998 May;1(1):36–41. doi: 10.1038/236. [DOI] [PubMed] [Google Scholar]
- Niven Jeremy E., Vähäsöyrinki Mikko, Kauranen Mika, Hardie Roger C., Juusola Mikko, Weckström Matti. The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature. 2003 Feb 6;421(6923):630–634. doi: 10.1038/nature01384. [DOI] [PubMed] [Google Scholar]
- Oberwinkler J., Stavenga D. G. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8578–8583. doi: 10.1073/pnas.97.15.8578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss H., Mojet M. H., Chyb S., Hardie R. C. In vivo analysis of the drosophila light-sensitive channels, TRP and TRPL. Neuron. 1997 Dec;19(6):1249–1259. doi: 10.1016/s0896-6273(00)80416-x. [DOI] [PubMed] [Google Scholar]
- Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
- Salkoff L., Wyman R. Genetic modification of potassium channels in Drosophila Shaker mutants. Nature. 1981 Sep 17;293(5829):228–230. doi: 10.1038/293228a0. [DOI] [PubMed] [Google Scholar]
- Weckström M., Laughlin S. B. Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci. 1995 Jan;18(1):17–21. doi: 10.1016/0166-2236(95)93945-t. [DOI] [PubMed] [Google Scholar]
- de Polavieja Gonzalo G. Errors drive the evolution of biological signalling to costly codes. J Theor Biol. 2002 Feb 21;214(4):657–664. doi: 10.1006/jtbi.2001.2498. [DOI] [PubMed] [Google Scholar]
