Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 Oct;32(4):498–504. doi: 10.1128/aem.32.4.498-504.1976

Mercurial toxicity in yeast: evidence for catabolic pathway inhibition.

R L Brunker
PMCID: PMC170296  PMID: 791121

Abstract

Evidence that the mechanism of mercurial toxicity is a blockage of catabolic metabolism is presented. Yeast cells (Saccharomyces cerevisiae) were found to cease respiratory activities within 1.5 min of contrast time with culture mercurials (as HgCl2). This cessation was followed by the rapid depletion of endogenous adenosine 5'-triphosphate (ATP) and a concomitant increase in phosphorylated hexoses. Levels of ATP in the culture medium remained essentially unchanged during this interval suggesting that the structural integrity of the membrane was not affected. Medium potassium concentrations did not increase until after endogenous ATP levels had begun to fall, suggesting that the loss of cellular potassium was the result of the inability of membrane ATPases to function because of the unavailability of sufficient substrate ATP to maintain this gradient.

Full text

PDF
498

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. W. Gain and loss of resistance in the fungus Penicillium roqueforti Thom. Proc R Soc Lond B Biol Sci. 1959 Jan 27;150(938):120–130. doi: 10.1098/rspb.1959.0011. [DOI] [PubMed] [Google Scholar]
  2. Ben-Bassat D., Shelef G., Gruner N., Shuval H. I. Growth of Chlamydomonas in a medium containing mercury. Nature. 1972 Nov 3;240(5375):43–44. doi: 10.1038/240043a0. [DOI] [PubMed] [Google Scholar]
  3. Beppu T., Arima K. Induction by mercuric ion of extensive degradation of cellular ribonucleic acid in Escherichia coli. J Bacteriol. 1969 Jun;98(3):888–897. doi: 10.1128/jb.98.3.888-897.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertilsson L., Neujahr H. Y. Methylation of mercury compounds by methylcobalamin. Biochemistry. 1971 Jul 6;10(14):2805–2808. doi: 10.1021/bi00790a024. [DOI] [PubMed] [Google Scholar]
  5. Brunker R. L. Autoinjector for the determination of picomolar quantities of ATP with a liquid scintillation counter. Anal Biochem. 1975 Feb;63(2):418–422. doi: 10.1016/0003-2697(75)90364-4. [DOI] [PubMed] [Google Scholar]
  6. Brunker R. L., Bott T. L. Reduction of mercury to the elemental state by a yeast. Appl Microbiol. 1974 May;27(5):870–873. doi: 10.1128/am.27.5.870-873.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jensen S., Jernelöv A. Biological methylation of mercury in aquatic organisms. Nature. 1969 Aug 16;223(5207):753–754. doi: 10.1038/223753a0. [DOI] [PubMed] [Google Scholar]
  8. Komura I., Izaki K. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli. J Biochem. 1971 Dec;70(6):885–893. doi: 10.1093/oxfordjournals.jbchem.a129718. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Loutit J. S. Investigation of the mating system of Pseudomonas aeruginosa strain I. VI. Mercury resistance associated with the sex factor (FP). Genet Res. 1970 Oct 2;16(2):179–184. doi: 10.1017/s0016672300002408. [DOI] [PubMed] [Google Scholar]
  11. PASSOW H., ROTHSTEIN A. The binding of mercury by the yeast cell in relation to changes in permeability. J Gen Physiol. 1960 Jan;43:621–633. doi: 10.1085/jgp.43.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RICHMOND M. H., JOHN M. CO-TRANSDUCTION BY A STAPHYLOCOCCAL PHAGE OF THE GENES RESPONSIBLE FOR PENICILLINASE SYNTHESIS AND RESISTANCE TO MERCURY SALTS. Nature. 1964 Jun 27;202:1360–1361. doi: 10.1038/2021360a0. [DOI] [PubMed] [Google Scholar]
  13. Singh A., Sherman F. Characteristics and relationships of mercury-resistant mutants and methionine auxotrophs of yeast. J Bacteriol. 1974 Jun;118(3):911–918. doi: 10.1128/jb.118.3.911-918.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith D. H. R factors mediate resistance to mercury, nickel, and cobalt. Science. 1967 May 26;156(3778):1114–1116. doi: 10.1126/science.156.3778.1114. [DOI] [PubMed] [Google Scholar]
  15. Southard J., Nitisewojo P., Green D. E. Mercurial toxicity and the perturbation of the mitochondrial control system. Fed Proc. 1974 Oct;33(10):2147–2153. [PubMed] [Google Scholar]
  16. Tonomura K., Maeda K., Futai F., Nakagami T., Yamada M. Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria. Nature. 1968 Feb 17;217(5129):644–646. doi: 10.1038/217644b0. [DOI] [PubMed] [Google Scholar]
  17. Vaituzis Z., Nelson J. D., Jr, Wan L. W., Colwell R. R. Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Appl Microbiol. 1975 Feb;29(2):275–286. doi: 10.1128/am.29.2.275-286.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES