Abstract
1. A method is described for measuring continuously the efflux of potassium or rubidium from smooth muscle of the guinea-pig.
2. Muscarinic drugs cause at maximum a 100-fold increase in the efflux rate, due to a direct increase in permeability and only to a minor extent secondary to depolarization. With acetylcholine the dose response curve for producing efflux is displaced to 1,000 times higher concentrations than that for contraction.
3. The shift varies with different agonists. The efflux and contractile responses to agonists are antagonized to an equivalent extent by atropine and several other reversible antagonists but benzhexol has a relatively greater effect on efflux. An estimate of spare receptors was obtained with benzilylcholine mustard and was similar for both responses. Dibenamine and local anaesthetics led to a parallel shift of the contraction dose response curve but a depression without shift in the efflux response.
4. The most satisfactory explanation of these results is that there are two types of the muscarinic receptor in the smooth muscle of the guinea-pig intestine.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BASS A. D., HURWITZ L., SMITH B. SMOOTH MUSCLE CONTRACTION IN PRESENCE OF AN INHIBITOR OF K EFFLUX. Am J Physiol. 1964 May;206:1021–1024. doi: 10.1152/ajplegacy.1964.206.5.1021. [DOI] [PubMed] [Google Scholar]
- BORN G. V., BULBRING E. The movement of potassium between smooth muscle and the surrounding fluid. J Physiol. 1956 Mar 28;131(3):690–703. doi: 10.1113/jphysiol.1956.sp005494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Rogers D. C. A study of the innervation of the taenia coli. J Cell Biol. 1967 Jun;33(3):573–596. doi: 10.1083/jcb.33.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DURBIN R. P., JENKINSON D. H. The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J Physiol. 1961 Jun;157:74–89. doi: 10.1113/jphysiol.1961.sp006706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill E. W., Rang H. P. An alkylating derivative of benzilylcholine with specific and long-lasting parasympatholytic activity. Mol Pharmacol. 1966 Jul;2(4):284–297. [PubMed] [Google Scholar]
- Ginsborg B. L. Ion movements in junctional transmission. Pharmacol Rev. 1967 Sep;19(3):289–316. [PubMed] [Google Scholar]
- KURIYAMA H. The influence of potassium, sodium and chloride on the membrane potential of the smooth muscle of taenia coli. J Physiol. 1963 Apr;166:15–28. doi: 10.1113/jphysiol.1963.sp007088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKinstry D. N., Koelle G. B. Acetylcholine release from the cat superior cervical ganglion by carbachol. J Pharmacol Exp Ther. 1967 Aug;157(2):319–327. [PubMed] [Google Scholar]
- PATON W. D., RANG H. P. THE UPTAKE OF ATROPINE AND RELATED DRUGS BY INTESTINAL SMOOTH MUSCLE OF THE GUINEA-PIG IN RELATION TO ACETYLCHOLINE RECEPTORS. Proc R Soc Lond B Biol Sci. 1965 Aug 24;163:1–44. doi: 10.1098/rspb.1965.0058. [DOI] [PubMed] [Google Scholar]
- RANG H. P. STIMULANT ACTIONS OF VOLATILE ANAESTHETICS ON SMOOTH MUSCLE. Br J Pharmacol Chemother. 1964 Apr;22:356–365. doi: 10.1111/j.1476-5381.1964.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rang H. P. The kinetics of action of acetylcholine antagonists in smooth muscle. Proc R Soc Lond B Biol Sci. 1966 Apr 19;164(996):488–510. doi: 10.1098/rspb.1966.0045. [DOI] [PubMed] [Google Scholar]
- WEISS G. B., COALSON R. E., HURWITZ L. K transport and mechanical responses of isolated longitudinal smooth muscle from guinea pig ileum. Am J Physiol. 1961 Apr;200:789–793. doi: 10.1152/ajplegacy.1961.200.4.789. [DOI] [PubMed] [Google Scholar]