Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 Dec;32(6):792–798. doi: 10.1128/aem.32.6.792-798.1976

Sublethal heat stress of Vibrio parahaemolyticus.

B S Emswiler, M D Pierson, S P Shoemaker
PMCID: PMC170462  PMID: 1008556

Abstract

When Vibrio parahaemolyticsu ATCC 17802 was heated at 41 degrees C for 30 min in 100 mM phosphate-3% NaCl buffer (pH 7.0), the plate counts obtained when using Trypticase soy agar containing 0.25% added NaCl (0.25 TSAS) were nearly 99.9% higher than plate counts using Trypticase soy agar containing 5.5% added NaCl (5.5 TSAS). A similar result was obtained when cells of V. parahaemolyticus were grown in a glucose salts medium (GSM) and heated at 45 degrees C. The injured cells recovered salt tolerance within 3 h when placed in either 2.5 TSBS or GSM at 30 degrees C. The addition of chloramphenicol, actinomycin D, or nalidixic acid to 2.5 TSBS during recovery of cells grown in 2.5 TSBS indicated that recovery was dependent upon protein, ribonucleic acid (RNA, and deoxyribonucleic acid (DNA) synthesis. Penicillin did not inhibit the recovery process. Heat-injured, GSM-grown cells required RNA synthesis but not DNA synthesis during recovery in GSM. Chemical analyses showed that total cellular RNA decreased and total cellular DNA remained constant during heat injury. The addition of [6-3H]uracil, L-[U-14C]leucine, and [methyl-3H]thymidine to the recovery media confirmed the results of the antibiotic experiments.

Full text

PDF
798

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allwood M. C., Russell A. D. Growth and metabolic activities of heat treated Staphylococcus aureus. J Appl Bacteriol. 1969 Mar;32(1):79–85. doi: 10.1111/j.1365-2672.1969.tb02191.x. [DOI] [PubMed] [Google Scholar]
  2. Allwood M. C., Russell A. D. Thermally induced changes in the physical properties of Staphylococcus aureus. J Appl Bacteriol. 1969 Mar;32(1):68–78. doi: 10.1111/j.1365-2672.1969.tb02190.x. [DOI] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauernfeind A. Mode of action of nalidixic acid. Antibiot Chemother (1971) 1971;17:122–136. doi: 10.1159/000392368. [DOI] [PubMed] [Google Scholar]
  5. Baumann P., Baumann L., Mandel M. Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol. 1971 Jul;107(1):268–294. doi: 10.1128/jb.107.1.268-294.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beuchat L. R. Survey of media for the resuscitation of heat-stressed Vibrio parahaemolyticus. J Appl Bacteriol. 1976 Feb;40(1):53–60. doi: 10.1111/j.1365-2672.1976.tb00590.x. [DOI] [PubMed] [Google Scholar]
  7. Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark C. W., Ordal Z. J. Thermal injury and recovery of Salmonella typhimurium and its effect on enumeration procedures. Appl Microbiol. 1969 Sep;18(3):332–336. doi: 10.1128/am.18.3.332-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark C. W., Witter L. D., Ordal Z. J. Thermal injury and recovery of Streptococcus faecalis. Appl Microbiol. 1968 Nov;16(11):1764–1769. doi: 10.1128/am.16.11.1764-1769.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gomez R. F., Sinskey A. J. Deoxyribonucleic acid breaks in heated Salmonella typhimurium LT-2 after exposure to nutritionally complex media. J Bacteriol. 1973 Aug;115(2):522–528. doi: 10.1128/jb.115.2.522-528.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray R. J., Witter L. D., Ordal Z. J. Characterization of mild thermal stress in Pseudomonas fluorescens and its repair. Appl Microbiol. 1973 Jul;26(1):78–85. doi: 10.1128/am.26.1.78-85.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haight R. D., Morita R. Y. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic marine bacterium. J Bacteriol. 1966 Nov;92(5):1388–1393. doi: 10.1128/jb.92.5.1388-1393.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iandolo J. J., Ordal Z. J. Repair of thermal injury of Staphylococcus aureus. J Bacteriol. 1966 Jan;91(1):134–142. doi: 10.1128/jb.91.1.134-142.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kenis P. R., Morita R. Y. Thermally induced leakage of cellular material and viability in Vibrio marinus, a psychrophilic marine bacterium. Can J Microbiol. 1968 Nov;14(11):1239–1244. doi: 10.1139/m68-206. [DOI] [PubMed] [Google Scholar]
  15. Miller L. L., Ordal Z. J. Thermal injury and recovery of Bacillus subtilis. Appl Microbiol. 1972 Dec;24(6):878–884. doi: 10.1128/am.24.6.878-884.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pierson M. D., Ordal Z. J. The transport of methyl-alpha-D-glucopyranoside by thermally stressed Salmonella typhimurium. Biochem Biophys Res Commun. 1971 Apr 16;43(2):378–383. doi: 10.1016/0006-291x(71)90764-9. [DOI] [PubMed] [Google Scholar]
  17. Pierson M. D., Tomlins R. I., Ordal Z. J. Biosynthesis during recovery of heat-injured Salmonella typhimurium. J Bacteriol. 1971 Mar;105(3):1234–1236. doi: 10.1128/jb.105.3.1234-1236.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenthal L. J., Iandolo J. J. Thermally induced intracellular alteration of ribosomal ribonucleic acid. J Bacteriol. 1970 Sep;103(3):833–835. doi: 10.1128/jb.103.3.833-835.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STILES M. E., WITTER L. D. THERMAL INACTIVATION, HEAT INJURY, AND RECOVERY OF STAPHYLOCOCCUS AUREUS. J Dairy Sci. 1965 Jun;48:677–681. doi: 10.3168/jds.s0022-0302(65)88321-7. [DOI] [PubMed] [Google Scholar]
  20. STRANGE R. E., SHON M. EFFECTS OF THERMAL STRESS ON VIABILITY AND RIBONUCLEIC ACID OF AEROBACTER AEROGENES IN AQUEOUS SUSPENSION. J Gen Microbiol. 1964 Jan;34:99–114. doi: 10.1099/00221287-34-1-99. [DOI] [PubMed] [Google Scholar]
  21. Sogin S. J., Ordal Z. J. Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to Staphylococcus. J Bacteriol. 1967 Oct;94(4):1082–1087. doi: 10.1128/jb.94.4.1082-1087.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tomlins R. I., Ordal Z. J. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of Salmonella typhimurium from thermal injury. J Bacteriol. 1971 Jul;107(1):134–142. doi: 10.1128/jb.107.1.134-142.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomlins R. I., Pierson M. D., Ordal Z. J. Effect of thermal injury on the TCA cycle enzymes of Staphylococcus aureus MF 31 and Salmonella typhimurium 7136. Can J Microbiol. 1971 Jun;17(6):759–765. doi: 10.1139/m71-121. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES