Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1997 May;60(5):1122–1127.

Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%.

M Macek Jr 1, A Mackova 1, A Hamosh 1, B C Hilman 1, R F Selden 1, G Lucotte 1, K J Friedman 1, M R Knowles 1, B J Rosenstein 1, G R Cutting 1
PMCID: PMC1712417  PMID: 9150159

Abstract

Cystic fibrosis (CF)--an autosomal recessive disorder caused by mutations in CF transmembrane conductance regulator (CFTR) and characterized by abnormal chloride conduction across epithelial membranes, leading to chronic lung and exocrine pancreatic disease--is less common in African-Americans than in Caucasians. No large-scale studies of mutation identification and screening in African-American CF patients have been reported, to date. In this study, the entire coding and flanking intronic sequence of the CFTR gene was analyzed by denaturing gradient-gel electrophoresis and sequencing in an index group of 82 African-American CF chromosomes to identify mutations. One novel mutation, 3120+1G-->A, occurred with a frequency of 12.3% and was also detected in a native African patient. To establish frequencies, an additional group of 66 African-American CF chromosomes were screened for mutations identified in two or more African-American patients. Screening for 16 "common Caucasian" mutations identified 52% of CF alleles in African-Americans, while screening for 8 "common African" mutations accounted for an additional 23%. The combined detection rate of 75% was comparable to the sensitivity of mutation analysis in Caucasian CF patients. These results indicate that African-Americans have their own set of "common" CF mutations that originate from the native African population. Inclusion of these "common" mutations substantially improves CF mutation detection rates in African-Americans.

Full text

PDF
1127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeliovich D., Lavon I. P., Lerer I., Cohen T., Springer C., Avital A., Cutting G. R. Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population. Am J Hum Genet. 1992 Nov;51(5):951–956. [PMC free article] [PubMed] [Google Scholar]
  2. Brackett J. C., Sims H. F., Rinaldo P., Shapiro S., Powell C. K., Bennett M. J., Strauss A. W. Two alpha subunit donor splice site mutations cause human trifunctional protein deficiency. J Clin Invest. 1995 May;95(5):2076–2082. doi: 10.1172/JCI117894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carles S., Desgeorges M., Goldman A., Thiart R., Guittard C., Kitazos C. A., de Ravel T. J., Westwood A. T., Claustres M., Ramsay M. First report of CFTR mutations in black cystic fibrosis patients of southern African origin. J Med Genet. 1996 Sep;33(9):802–804. doi: 10.1136/jmg.33.9.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chillón M., Dörk T., Casals T., Giménez J., Fonknechten N., Will K., Ramos D., Nunes V., Estivill X. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype. Am J Hum Genet. 1995 Mar;56(3):623–629. [PMC free article] [PubMed] [Google Scholar]
  5. Cutting G. R., Antonarakis S. E., Buetow K. H., Kasch L. M., Rosenstein B. J., Kazazian H. H., Jr Analysis of DNA polymorphism haplotypes linked to the cystic fibrosis locus in North American black and Caucasian families supports the existence of multiple mutations of the cystic fibrosis gene. Am J Hum Genet. 1989 Mar;44(3):307–318. [PMC free article] [PubMed] [Google Scholar]
  6. Cutting G. R., Curristin S. M., Nash E., Rosenstein B. J., Lerer I., Abeliovich D., Hill A., Graham C. Analysis of four diverse population groups indicates that a subset of cystic fibrosis mutations occur in common among Caucasians. Am J Hum Genet. 1992 Jun;50(6):1185–1194. [PMC free article] [PubMed] [Google Scholar]
  7. Cutting G. R., Kasch L. M., Rosenstein B. J., Zielenski J., Tsui L. C., Antonarakis S. E., Kazazian H. H., Jr A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366–369. doi: 10.1038/346366a0. [DOI] [PubMed] [Google Scholar]
  8. Demay G., Cheron G., Challier P., Lenoir G., Mbede M. Mucoviscidose chez un enfant africain. A propos d'un cas. Arch Fr Pediatr. 1984 May;41(5):370–370. [PubMed] [Google Scholar]
  9. Friedman K. J., Highsmith W. E., Jr, Silverman L. M. Detecting multiple cystic fibrosis mutations by polymerase chain reaction-mediated site-directed mutagenesis. Clin Chem. 1991 May;37(5):753–755. [PubMed] [Google Scholar]
  10. Férec C., Audrezet M. P., Mercier B., Guillermit H., Moullier P., Quere I., Verlingue C. Detection of over 98% cystic fibrosis mutations in a Celtic population. Nat Genet. 1992 Jun;1(3):188–191. doi: 10.1038/ng0692-188. [DOI] [PubMed] [Google Scholar]
  11. Hamosh A., Trapnell B. C., Zeitlin P. L., Montrose-Rafizadeh C., Rosenstein B. J., Crystal R. G., Cutting G. R. Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J Clin Invest. 1991 Dec;88(6):1880–1885. doi: 10.1172/JCI115510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kawasaki E., Saiki R., Erlich H. Genetic analysis using polymerase chain reaction-amplified DNA and immobilized oligonucleotide probes: reverse dot-blot typing. Methods Enzymol. 1993;218:369–381. doi: 10.1016/0076-6879(93)18029-c. [DOI] [PubMed] [Google Scholar]
  13. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  14. Levin S. E., Blumberg H., Zamit R., Schmaman A., Wagstaff L. Mucoviscidosis (cystic fibrosis of the pancreas) in Bantu twin neonates. S Afr Med J. 1967 May 13;41(19):482–485. [PubMed] [Google Scholar]
  15. Macek M., Jr, Mercier B., Macková A., Miller P. W., Hamosh A., Férec C., Cutting G. R. Sensitivity of the denaturing gradient gel electrophoresis technique in detection of known mutations and novel Asian mutations in the CFTR gene. Hum Mutat. 1997;9(2):136–147. doi: 10.1002/(SICI)1098-1004(1997)9:2<136::AID-HUMU6>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  16. Mercier B., Lissens W., Audrézet M. P., Bonduelle M., Liebaers I., Ferec C. Detection of more than 94% cystic fibrosis mutations in a sample of Belgian population and identification of four novel mutations. Hum Mutat. 1993;2(1):16–20. doi: 10.1002/humu.1380020104. [DOI] [PubMed] [Google Scholar]
  17. Mertes G., Ludwig M., Finkelnburg B., Krawczak M., Schwaab R., Brackmann H. H., Olek K. A G+3-to-T donor splice site mutation leads to skipping of exon 50 in von Willebrand factor mRNA. Genomics. 1994 Nov 1;24(1):190–191. doi: 10.1006/geno.1994.1602. [DOI] [PubMed] [Google Scholar]
  18. Montell C., Berk A. J. Elimination of mRNA splicing by a point mutation outside the conserved GU at 5' splice sites. Nucleic Acids Res. 1984 May 11;12(9):3821–3827. doi: 10.1093/nar/12.9.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ober C., Lester L. A., Mott C., Billstrand C., Lemke A., van der Ven K., Marcus S., Kraut J., Lloyd-Still J., Booth C. Ethnic heterogeneity and cystic fibrosis transmembrane regulator (CFTR) mutation frequencies in Chicago-area CF families. Am J Hum Genet. 1992 Dec;51(6):1344–1348. [PMC free article] [PubMed] [Google Scholar]
  20. Padgett R. A., Grabowski P. J., Konarska M. M., Seiler S., Sharp P. A. Splicing of messenger RNA precursors. Annu Rev Biochem. 1986;55:1119–1150. doi: 10.1146/annurev.bi.55.070186.005351. [DOI] [PubMed] [Google Scholar]
  21. Phillips O. P., Bishop C., Woods D., Elias S. Cystic fibrosis mutations among African Americans in the southeastern United States. J Natl Med Assoc. 1995 Jun;87(6):433–435. [PMC free article] [PubMed] [Google Scholar]
  22. Reiss J., Cooper D. N., Bal J., Slomski R., Cutting G. R., Krawczak M. Discrimination between recurrent mutation and identity by descent: application to point mutations in exon 11 of the cystic fibrosis (CFTR) gene. Hum Genet. 1991 Aug;87(4):457–461. doi: 10.1007/BF00197168. [DOI] [PubMed] [Google Scholar]
  23. Romey M. C., Desgeorges M., Ray P., Godard P., Demaille J., Claustres M. Novel missense mutation in the first transmembrane segment of the CFTR gene (Q98R) identified in a male adult. Hum Mutat. 1995;6(2):190–191. doi: 10.1002/humu.1380060216. [DOI] [PubMed] [Google Scholar]
  24. Smit L. S., Nasr S. Z., Iannuzzi M. C., Collins F. S. An African-American cystic fibrosis patient homozygous for a novel frameshift mutation associated with reduced CFTR mRNA levels. Hum Mutat. 1993;2(2):148–151. doi: 10.1002/humu.1380020217. [DOI] [PubMed] [Google Scholar]
  25. Smit L. S., Strong T. V., Wilkinson D. J., Macek M., Jr, Mansoura M. K., Wood D. L., Cole J. L., Cutting G. R., Cohn J. A., Dawson D. C. Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum Mol Genet. 1995 Feb;4(2):269–273. doi: 10.1093/hmg/4.2.269. [DOI] [PubMed] [Google Scholar]
  26. Wang C. I., Sumi W. T., Stanton R., Kwok S., Yamazaki J. N. Cystic fibrosis in an Oriental child. N Engl J Med. 1968 Nov 28;279(22):1216–1218. doi: 10.1056/NEJM196811282792209. [DOI] [PubMed] [Google Scholar]
  27. White M. B., Krueger L. J., Holsclaw D. S., Jr, Gerrard B. C., Stewart C., Quittell L., Dolganov G., Baranov V., Ivaschenko T., Kapronov N. I. Detection of three rare frameshift mutations in the cystic fibrosis gene in an African-American (CF444delA), an Italian (CF2522insC), and a Soviet (CF3821delT). Genomics. 1991 May;10(1):266–269. doi: 10.1016/0888-7543(91)90510-l. [DOI] [PubMed] [Google Scholar]
  28. Will K., Dörk T., Stuhrmann M., von der Hardt H., Ellemunter H., Tümmler B., Schmidtke J. Transcript analysis of CFTR nonsense mutations in lymphocytes and nasal epithelial cells from cystic fibrosis patients. Hum Mutat. 1995;5(3):210–220. doi: 10.1002/humu.1380050305. [DOI] [PubMed] [Google Scholar]
  29. Zielenski J., Bozon D., Kerem B., Markiewicz D., Durie P., Rommens J. M., Tsui L. C. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):229–235. doi: 10.1016/0888-7543(91)90504-8. [DOI] [PubMed] [Google Scholar]
  30. Zielenski J., Rozmahel R., Bozon D., Kerem B., Grzelczak Z., Riordan J. R., Rommens J., Tsui L. C. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):214–228. doi: 10.1016/0888-7543(91)90503-7. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES