Abstract
Keratin 12 (K12) is an intermediate-filament protein expressed specifically in corneal epithelium. Recently, we isolated K12 cDNA from a human corneal epithelial cDNA library and determined its full sequence. Herein, we present the exon-intron boundary structure and chromosomal localization of human K12. In addition, we report four K12 mutations in Meesmann corneal epithelial dystrophy (MCD), an autosomal dominant disorder characterized by intraepithelial microcysts and corneal epithelial fragility in which mutations in keratin 3 (K3) and K12 have recently been implicated. In the human K12 gene, we identified seven introns, defining eight individual exons that cover the coding sequence. Together the exons and introns span approximately 6 kb of genomic DNA. Using FISH, we found that the K12 gene mapped to 17q12, where a type I keratin cluster exists. In this study, four new K12 mutations (Arg135Gly, Arg135Ile, Tyr429Asp, and Leu140Arg) were identified in three unrelated MCD pedigrees and in one individual with MCD. All mutations were either in the highly conserved alpha-helix-initiation motif of rod domain 1A or in the alpha-helix-termination motif of rod domain 2B. These sites are essential for keratin filament assembly, suggesting that the mutations described above may be causative for MCD. Of particular interest, one of these mutations (Tyr429Asp), detected in both affected individuals in one of our pedigrees, is the first mutation to be identified within the alpha-helix-termination motif in type I keratin.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonifas J. M., Rothman A. L., Epstein E. H., Jr Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science. 1991 Nov 22;254(5035):1202–1205. doi: 10.1126/science.1720261. [DOI] [PubMed] [Google Scholar]
- Chan Y. M., Yu Q. C., Fine J. D., Fuchs E. The genetic basis of Weber-Cockayne epidermolysis bullosa simplex. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7414–7418. doi: 10.1073/pnas.90.15.7414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen M. A., Bonifas J. M., Matsumura K., Blumenfeld A., Epstein E. H., Jr A novel three-nucleotide deletion in the helix 2B region of keratin 14 in epidermolysis bullosa simplex: delta E375. Hum Mol Genet. 1993 Nov;2(11):1971–1972. doi: 10.1093/hmg/2.11.1971. [DOI] [PubMed] [Google Scholar]
- Cheng J., Syder A. J., Yu Q. C., Letai A., Paller A. S., Fuchs E. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell. 1992 Sep 4;70(5):811–819. doi: 10.1016/0092-8674(92)90314-3. [DOI] [PubMed] [Google Scholar]
- Coulombe P. A., Fuchs E. Elucidating the early stages of keratin filament assembly. J Cell Biol. 1990 Jul;111(1):153–169. doi: 10.1083/jcb.111.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulombe P. A., Hutton M. E., Letai A., Hebert A., Paller A. S., Fuchs E. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell. 1991 Sep 20;66(6):1301–1311. doi: 10.1016/0092-8674(91)90051-y. [DOI] [PubMed] [Google Scholar]
- Geisler N., Schünemann J., Weber K. Chemical cross-linking indicates a staggered and antiparallel protofilament of desmin intermediate filaments and characterizes one higher-level complex between protofilaments. Eur J Biochem. 1992 Jun 15;206(3):841–852. doi: 10.1111/j.1432-1033.1992.tb16992.x. [DOI] [PubMed] [Google Scholar]
- Hatzfeld M., Weber K. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression. J Cell Biol. 1990 Apr;110(4):1199–1210. doi: 10.1083/jcb.110.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hovnanian A., Pollack E., Hilal L., Rochat A., Prost C., Barrandon Y., Goossens M. A missense mutation in the rod domain of keratin 14 associated with recessive epidermolysis bullosa simplex. Nat Genet. 1993 Apr;3(4):327–332. doi: 10.1038/ng0493-327. [DOI] [PubMed] [Google Scholar]
- Humphries M. M., Sheils D. M., Farrar G. J., Kumar-Singh R., Kenna P. F., Mansergh F. C., Jordan S. A., Young M., Humphries P. A mutation (Met-->Arg) in the type I keratin (K14) gene responsible for autosomal dominant epidermolysis bullosa simplex. Hum Mutat. 1993;2(1):37–42. doi: 10.1002/humu.1380020107. [DOI] [PubMed] [Google Scholar]
- Irvine A. D., Corden L. D., Swensson O., Swensson B., Moore J. E., Frazer D. G., Smith F. J., Knowlton R. G., Christophers E., Rochels R. Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy. Nat Genet. 1997 Jun;16(2):184–187. doi: 10.1038/ng0697-184. [DOI] [PubMed] [Google Scholar]
- KUWABARA T., CICCARELLI E. C. MEESMANN'S CORNEAL DYSTROPHY. A PATHOLOGICAL STUDY. Arch Ophthalmol. 1964 May;71:672–682. doi: 10.1001/archopht.1964.00970010692015. [DOI] [PubMed] [Google Scholar]
- Kao W. W., Liu C. Y., Converse R. L., Shiraishi A., Kao C. W., Ishizaki M., Doetschman T., Duffy J. Keratin 12-deficient mice have fragile corneal epithelia. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2572–2584. [PubMed] [Google Scholar]
- Klinge E. M., Sylvestre Y. R., Freedberg I. M., Blumenberg M. Evolution of keratin genes: different protein domains evolve by different pathways. J Mol Evol. 1987;24(4):319–329. doi: 10.1007/BF02134130. [DOI] [PubMed] [Google Scholar]
- Kurpakus M. A., Stock E. L., Jones J. C. Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci. 1990 Mar 1;31(3):448–456. [PubMed] [Google Scholar]
- Lane E. B. Keratin diseases. Curr Opin Genet Dev. 1994 Jun;4(3):412–418. doi: 10.1016/0959-437x(94)90030-2. [DOI] [PubMed] [Google Scholar]
- Lane E. B., Rugg E. L., Navsaria H., Leigh I. M., Heagerty A. H., Ishida-Yamamoto A., Eady R. A. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature. 1992 Mar 19;356(6366):244–246. doi: 10.1038/356244a0. [DOI] [PubMed] [Google Scholar]
- Letai A., Coulombe P. A., Fuchs E. Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations. J Cell Biol. 1992 Mar;116(5):1181–1195. doi: 10.1083/jcb.116.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu C. Y., Zhu G., Converse R., Kao C. W., Nakamura H., Tseng S. C., Mui M. M., Seyer J., Justice M. J., Stech M. E. Characterization and chromosomal localization of the cornea-specific murine keratin gene Krt1.12. J Biol Chem. 1994 Oct 7;269(40):24627–24636. [PubMed] [Google Scholar]
- Liu C. Y., Zhu G., Westerhausen-Larson A., Converse R., Kao C. W., Sun T. T., Kao W. W. Cornea-specific expression of K12 keratin during mouse development. Curr Eye Res. 1993 Nov;12(11):963–974. doi: 10.3109/02713689309029222. [DOI] [PubMed] [Google Scholar]
- Lu X., Lane E. B. Retrovirus-mediated transgenic keratin expression in cultured fibroblasts: specific domain functions in keratin stabilization and filament formation. Cell. 1990 Aug 24;62(4):681–696. doi: 10.1016/0092-8674(90)90114-t. [DOI] [PubMed] [Google Scholar]
- McLean W. H., Eady R. A., Dopping-Hepenstal P. J., McMillan J. R., Leigh I. M., Navsaria H. A., Higgins C., Harper J. I., Paige D. G., Morley S. M. Mutations in the rod 1A domain of keratins 1 and 10 in bullous congenital ichthyosiform erythroderma (BCIE). J Invest Dermatol. 1994 Jan;102(1):24–30. doi: 10.1111/1523-1747.ep12371726. [DOI] [PubMed] [Google Scholar]
- Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
- Nakanishi I., Brown S. I. Clinicopathologic case report: ultrastructure of the epithelial dystrophy of Meesmann. Arch Ophthalmol. 1975 Apr;93(4):259–263. doi: 10.1001/archopht.1975.01010020269004. [DOI] [PubMed] [Google Scholar]
- Nishida K., Adachi W., Shimizu-Matsumoto A., Kinoshita S., Mizuno K., Matsubara K., Okubo K. A gene expression profile of human corneal epithelium and the isolation of human keratin 12 cDNA. Invest Ophthalmol Vis Sci. 1996 Aug;37(9):1800–1809. [PubMed] [Google Scholar]
- Nishida K., Sotozono C., Adachi W., Yamamoto S., Yokoi N., Kinoshita S. Transforming growth factor-beta 1, -beta 2 and -beta 3 mRNA expression in human cornea. Curr Eye Res. 1995 Mar;14(3):235–241. doi: 10.3109/02713689509033520. [DOI] [PubMed] [Google Scholar]
- Parry D. A., Crewther W. G., Fraser R. D., MacRae T. P. Structure of alpha-keratin: structural implication of the amino acid sequences of the type I and type II chain segments. J Mol Biol. 1977 Jun 25;113(2):449–454. doi: 10.1016/0022-2836(77)90153-x. [DOI] [PubMed] [Google Scholar]
- Reis A., Hennies H. C., Langbein L., Digweed M., Mischke D., Drechsler M., Schröck E., Royer-Pokora B., Franke W. W., Sperling K. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat Genet. 1994 Feb;6(2):174–179. doi: 10.1038/ng0294-174. [DOI] [PubMed] [Google Scholar]
- Rothnagel J. A., Dominey A. M., Dempsey L. D., Longley M. A., Greenhalgh D. A., Gagne T. A., Huber M., Frenk E., Hohl D., Roop D. R. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science. 1992 Aug 21;257(5073):1128–1130. doi: 10.1126/science.257.5073.1128. [DOI] [PubMed] [Google Scholar]
- Rugg E. L., Morley S. M., Smith F. J., Boxer M., Tidman M. J., Navsaria H., Leigh I. M., Lane E. B. Missing links: Weber-Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function. Nat Genet. 1993 Nov;5(3):294–300. doi: 10.1038/ng1193-294. [DOI] [PubMed] [Google Scholar]
- Schermer A., Galvin S., Sun T. T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986 Jul;103(1):49–62. doi: 10.1083/jcb.103.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shamsher M. K., Navsaria H. A., Stevens H. P., Ratnavel R. C., Purkis P. E., Kelsell D. P., McLean W. H., Cook L. J., Griffiths W. A., Gschmeissner S. Novel mutations in keratin 16 gene underly focal non-epidermolytic palmoplantar keratoderma (NEPPK) in two families. Hum Mol Genet. 1995 Oct;4(10):1875–1881. doi: 10.1093/hmg/4.10.1875. [DOI] [PubMed] [Google Scholar]
- Steinert P. M., Marekov L. N., Fraser R. D., Parry D. A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J Mol Biol. 1993 Mar 20;230(2):436–452. doi: 10.1006/jmbi.1993.1161. [DOI] [PubMed] [Google Scholar]
- Stephens K., Sybert V. P., Wijsman E. M., Ehrlich P., Spencer A. A keratin 14 mutational hot spot for epidermolysis bullosa simplex, Dowling-Meara: implications for diagnosis. J Invest Dermatol. 1993 Aug;101(2):240–243. doi: 10.1111/1523-1747.ep12365079. [DOI] [PubMed] [Google Scholar]
- Vassar R., Coulombe P. A., Degenstein L., Albers K., Fuchs E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell. 1991 Jan 25;64(2):365–380. doi: 10.1016/0092-8674(91)90645-f. [DOI] [PubMed] [Google Scholar]
- Wilson A. K., Coulombe P. A., Fuchs E. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro. J Cell Biol. 1992 Oct;119(2):401–414. doi: 10.1083/jcb.119.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu R. L., Chen T. T., Sun T. T. Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. J Biol Chem. 1994 Nov 11;269(45):28450–28459. [PubMed] [Google Scholar]