Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 Nov;83(3):F198–F202. doi: 10.1136/fn.83.3.F198

Leptin and metabolic hormones in preterm newborns

P Ng, C Lam, C Lee, G Wong, T Fok, I Chan, K Ma, E Wong
PMCID: PMC1721164  PMID: 11040168

Abstract

AIM—To investigate the inter-relation between leptin and other metabolic hormones in preterm and term infants and to explore whether a functional "adipoinsular axis" might exist in preterm newborns.
METHODS—A total of 140 preterm and term newborns were prospectively recruited and categorised according to gestation length. Blood samples were taken at 24 hours (day 1), and on day 4-5 of life.
RESULTS—Serum leptin, cortisol, free thyroxine, and plasma ACTH on day 1 were significantly higher in term than in preterm infants. The relation between serum leptin and gestation followed a non-linear pattern; the slope of the curve began to increase steeply between 33 and 35 weeks gestation. Serum leptin on day 1 was significantly associated with serum insulin, insulin:glucose ratio, and plasma ACTH in infants less than 34 weeks gestation; serum leptin on day 1 and day 4-5 were significantly correlated with insulin:glucose ratio in infants 34 or more weeks gestation. Significant changes in the pattern of metabolic hormones were observed in the first week of life. Serum insulin and plasma glucose were significantly increased between day 1 and day 4-5; serum leptin was significantly decreased.
CONCLUSIONS—The circulating leptin concentration increases markedly after 34 weeks gestation and bears a close temporal relation with the exponential accumulation of body fat mass during that period. The inter-relation between serum leptin and insulin or insulin:glucose ratio before and after 34 weeks gestation indicates that the "adipoinsular axis" is likely to be functional in early (<34 weeks gestation) intrauterine life. The rapid decline in the circulating concentrations of leptin after birth may be of physiological advantage to preterm and term newborns by limiting their body energy expenditure and conserving nutritional reverses for subsequent growth and development.


Serum leptin increases considerably after 34 weeks gestation and bears a close temporal relation with the rapid accumulation of body fat mass during late gestation. The association between serum leptin and insulin or insulin:glucose ratio suggests that the "adipoinsular axis" is likely to be functional in early (less than 34 weeks gestation) intrauterine life

Full Text

The Full Text of this article is available as a PDF (140.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M. L., Ong K. K., Morrell D. J., Cox L., Drayer N., Perry L., Preece M. A., Dunger D. B. Longitudinal study of leptin concentrations during puberty: sex differences and relationship to changes in body composition. J Clin Endocrinol Metab. 1999 Mar;84(3):899–905. doi: 10.1210/jcem.84.3.5559. [DOI] [PubMed] [Google Scholar]
  2. Ballard J. L., Khoury J. C., Wedig K., Wang L., Eilers-Walsman B. L., Lipp R. New Ballard Score, expanded to include extremely premature infants. J Pediatr. 1991 Sep;119(3):417–423. doi: 10.1016/s0022-3476(05)82056-6. [DOI] [PubMed] [Google Scholar]
  3. Bornstein S. R., Licinio J., Tauchnitz R., Engelmann L., Negrão A. B., Gold P., Chrousos G. P. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab. 1998 Jan;83(1):280–283. doi: 10.1210/jcem.83.1.4610. [DOI] [PubMed] [Google Scholar]
  4. Campfield L. A., Smith F. J., Guisez Y., Devos R., Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995 Jul 28;269(5223):546–549. doi: 10.1126/science.7624778. [DOI] [PubMed] [Google Scholar]
  5. Considine R. V., Nyce M. R., Kolaczynski J. W., Zhang P. L., Ohannesian J. P., Moore J. H., Jr, Fox J. W., Caro J. F. Dexamethasone stimulates leptin release from human adipocytes: unexpected inhibition by insulin. J Cell Biochem. 1997 May;65(2):254–258. doi: 10.1002/(sici)1097-4644(199705)65:2<254::aid-jcb10>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  6. Considine R. V., Sinha M. K., Heiman M. L., Kriauciunas A., Stephens T. W., Nyce M. R., Ohannesian J. P., Marco C. C., McKee L. J., Bauer T. L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996 Feb 1;334(5):292–295. doi: 10.1056/NEJM199602013340503. [DOI] [PubMed] [Google Scholar]
  7. Gasparoni A., Chirico G., De Amici D., Marconi M., Belloni C., Mingrat G., Rondini G. Neutrophil chemotaxis in infants delivered by caesarean section. Eur J Pediatr. 1991 May;150(7):481–482. doi: 10.1007/BF01958427. [DOI] [PubMed] [Google Scholar]
  8. Harigaya A., Nagashima K., Nako Y., Morikawa A. Relationship between concentration of serum leptin and fetal growth. J Clin Endocrinol Metab. 1997 Oct;82(10):3281–3284. doi: 10.1210/jcem.82.10.4321. [DOI] [PubMed] [Google Scholar]
  9. Hastie T., Tibshirani R. Generalized additive models for medical research. Stat Methods Med Res. 1995 Sep;4(3):187–196. doi: 10.1177/096228029500400302. [DOI] [PubMed] [Google Scholar]
  10. Jaquet D., Leger J., Levy-Marchal C., Oury J. F., Czernichow P. Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab. 1998 Apr;83(4):1243–1246. doi: 10.1210/jcem.83.4.4731. [DOI] [PubMed] [Google Scholar]
  11. Lao T. T., Panesar N. S. The effect of labour on prolactin and cortisol concentrations in the mother and the fetus. Eur J Obstet Gynecol Reprod Biol. 1989 Mar;30(3):233–238. doi: 10.1016/0028-2243(89)90006-3. [DOI] [PubMed] [Google Scholar]
  12. Larsson H., Ahrén B. Short-term dexamethasone treatment increases plasma leptin independently of changes in insulin sensitivity in healthy women. J Clin Endocrinol Metab. 1996 Dec;81(12):4428–4432. doi: 10.1210/jcem.81.12.8954054. [DOI] [PubMed] [Google Scholar]
  13. Marchini G., Fried G., Ostlund E., Hagenäs L. Plasma leptin in infants: relations to birth weight and weight loss. Pediatrics. 1998 Mar;101(3 Pt 1):429–432. doi: 10.1542/peds.101.3.429. [DOI] [PubMed] [Google Scholar]
  14. Matsuda J., Yokota I., Iida M., Murakami T., Yamada M., Saijo T., Naito E., Ito M., Shima K., Kuroda Y. Dynamic changes in serum leptin concentrations during the fetal and neonatal periods. Pediatr Res. 1999 Jan;45(1):71–75. doi: 10.1203/00006450-199901000-00012. [DOI] [PubMed] [Google Scholar]
  15. Miell J. P., Englaro P., Blum W. F. Dexamethasone induces an acute and sustained rise in circulating leptin levels in normal human subjects. Horm Metab Res. 1996 Dec;28(12):704–707. doi: 10.1055/s-2007-979882. [DOI] [PubMed] [Google Scholar]
  16. Ng P. C., Wong G. W., Lam C. W., Lee C. H., Wong M. Y., Fok T. F., Wong W., Chan D. C. Pituitary-adrenal response in preterm very low birth weight infants after treatment with antenatal corticosteroids. J Clin Endocrinol Metab. 1997 Nov;82(11):3548–3552. doi: 10.1210/jcem.82.11.4392. [DOI] [PubMed] [Google Scholar]
  17. Ong K. K., Ahmed M. L., Sherriff A., Woods K. A., Watts A., Golding J., Dunger D. B. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J Clin Endocrinol Metab. 1999 Mar;84(3):1145–1148. doi: 10.1210/jcem.84.3.5657. [DOI] [PubMed] [Google Scholar]
  18. Salbe A. D., Nicolson M., Ravussin E. Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. J Clin Invest. 1997 Feb 15;99(4):592–595. doi: 10.1172/JCI119200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shekhawat P. S., Garland J. S., Shivpuri C., Mick G. J., Sasidharan P., Pelz C. J., McCormick K. L. Neonatal cord blood leptin: its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr Res. 1998 Mar;43(3):338–343. doi: 10.1203/00006450-199803000-00005. [DOI] [PubMed] [Google Scholar]
  20. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES