Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Jun;32(6):814–818. doi: 10.1128/aac.32.6.814

Cyclohexane triones, novel membrane-active antibacterial agents.

W J Lloyd 1, A V Broadhurst 1, M J Hall 1, K J Andrews 1, W E Barber 1, P Wong-Kai-In 1
PMCID: PMC172288  PMID: 3137860

Abstract

The cyclohexane triones are a novel group of synthetic antibacterial agents that are active against gram-positive bacteria, Haemophilus influenzae, and Mycobacterium smegmatis. In general, these compounds behaved in a manner similar to that of hexachlorophene, inhibiting the transport of low-molecular-weight hydrophilic substances into bacteria. Unlike cationic detergents, such as chlorhexidine, they did not cause disruption of the bacterial cytoplasmic membrane over a short time period. The most potent antibacterial cyclohexane trione studied had a reduced ability to inhibit solute transport in comparison with certain less active analogs. Cyclohexane triones may express more than a single type of antibacterial effect.

Full text

PDF
816

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Lloyd W. J., Ringrose P. S. Phosphonopeptide antibacterial agents related to alafosfalin: design, synthesis, and structure-activity relationships. Antimicrob Agents Chemother. 1980 Dec;18(6):897–905. doi: 10.1128/aac.18.6.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Lloyd W. J., Ringrose P. S. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother. 1979 May;15(5):696–705. doi: 10.1128/aac.15.5.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Ringrose P. S. Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. Antimicrob Agents Chemother. 1979 May;15(5):677–683. doi: 10.1128/aac.15.5.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Competition of beta-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother. 1979 Sep;16(3):325–328. doi: 10.1128/aac.16.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Decker S. J., Lang D. R. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation. J Biol Chem. 1977 Sep 10;252(17):5936–5938. [PubMed] [Google Scholar]
  6. Jungermann E. Soap bacteriostats. J Am Oil Chem Soc. 1968 May;45(5):345–350. doi: 10.1007/BF02667108. [DOI] [PubMed] [Google Scholar]
  7. Lambert P. A. Membrane-active antimicrobial agents. Prog Med Chem. 1978;15:87–124. doi: 10.1016/s0079-6468(08)70254-6. [DOI] [PubMed] [Google Scholar]
  8. Levin B. C., Freese E. Comparison of the effects of two lipophilic acids, hexachlorophene and decanoate, on Bacillus subtilis. Antimicrob Agents Chemother. 1977 Sep;12(3):357–367. doi: 10.1128/aac.12.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nikaido H., Nakae T. The outer membrane of Gram-negative bacteria. Adv Microb Physiol. 1979;20:163–250. doi: 10.1016/s0065-2911(08)60208-8. [DOI] [PubMed] [Google Scholar]
  10. Silvernale J. N., Joswick H. L., Corner T. R., Gerhardt P. Antimicrobial actions of hexachlorophene: cytological manifestations. J Bacteriol. 1971 Oct;108(1):482–491. doi: 10.1128/jb.108.1.482-491.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Zimmermann W. Penetration of beta-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrob Agents Chemother. 1980 Jul;18(1):94–100. doi: 10.1128/aac.18.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES