Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Aug;32(8):1124–1130. doi: 10.1128/aac.32.8.1124

Effects of amodiaquine, chloroquine, and mefloquine on human polymorphonuclear neutrophil function in vitro.

M T Labro 1, C Babin-Chevaye 1
PMCID: PMC172363  PMID: 3263835

Abstract

This study concerns the in vitro interaction with human polymorphonuclear neutrophils (PMNs) of amodiaquine, chloroquine, and mefloquine, three antimalarial drugs currently in use for the treatment and prophylaxis of malaria. It was found that mefloquine (100 and 50 micrograms/ml) significantly altered PMN viability while the other two drugs did not. Neutrophil chemotaxis was impaired by chloroquine (100 micrograms/ml) and mefloquine (greater than 10 micrograms/ml) but not by amodiaquine. Phagocytosis was decreased by about 50% in the presence of chloroquine (100 micrograms/ml) or mefloquine (10 micrograms/ml). The three antimalarial drugs altered neutrophil oxidative metabolism as assessed by luminol-amplified chemiluminescence. The strongest effect was observed with mefloquine, which abolished almost completely the neutrophil burst at concentrations of greater than 10 micrograms/ml whatever the stimulus used. This effect was not reversed by washing. Chloroquine and amodiaquine also impaired this PMN response by approximately 80 and 50%, respectively, but only at the highest concentration used (100 micrograms/ml). In the case of amodiaquine, the neutrophil response was restored by washing, except for stimulation with opsonized particles. After washing, the depressive effect of chloroquine was reversed completely in the case of phorbol myristate acetate stimulation and partly in the case of opsonized particle stimulation, but the formylmethionyl-leucyl-phenylalanine-induced response was not restored. These data show that although they are structurally related, amodiaquine and chloroquine exhibit qualitatively and quantitatively different depressive effects on PMN function and probably interfere at different points of cell activation, although the precise mechanisms are as yet unresolved.

Full text

PDF
1124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake L. A., West B. C., Lary C. H., Todd J. R., 4th Environmental nonhuman sources of leprosy. Rev Infect Dis. 1987 May-Jun;9(3):562–577. doi: 10.1093/clinids/9.3.562. [DOI] [PubMed] [Google Scholar]
  2. Brown J., Smalley M. E. Inhibition of the in vitro growth of Plasmodium falciparum by human polymorphonuclear neutrophil leucocytes. Clin Exp Immunol. 1981 Oct;46(1):106–109. [PMC free article] [PubMed] [Google Scholar]
  3. Bygbjerg I. C., Flachs H. Effect of chloroquine on human lymphocyte proliferation. Trans R Soc Trop Med Hyg. 1986;80(2):231–235. doi: 10.1016/0035-9203(86)90021-0. [DOI] [PubMed] [Google Scholar]
  4. Carr R. Neutropenia and prophylactic amodiaquine. Lancet. 1986 Mar 8;1(8480):556–556. doi: 10.1016/s0140-6736(86)90908-6. [DOI] [PubMed] [Google Scholar]
  5. Celada A., Cruchaud A., Perrin L. H. Independence of complement on in vitro immune phagocytosis of plasmodium falciparum parasitised erythrocytes by human monocytes and polymorphonuclear leukocytes. Int Arch Allergy Appl Immunol. 1984;73(4):363–366. doi: 10.1159/000233499. [DOI] [PubMed] [Google Scholar]
  6. Celada A., Cruchaud A., Perrin L. H. Phagocytosis of Plasmodium falciparum-parasitized erythrocytes by human polymorphonuclear leukocytes. J Parasitol. 1983 Feb;69(1):49–53. [PubMed] [Google Scholar]
  7. Chevli R., Fitch C. D. The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrob Agents Chemother. 1982 Apr;21(4):581–586. doi: 10.1128/aac.21.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dahlgren C., Stendahl O. Effect of in vitro preincubation of polymorphonuclear leukocytes on formylmethionyl-leucyl-phenylalanine-induced chemiluminescence. Infect Immun. 1982 Jul;37(1):34–39. doi: 10.1128/iai.37.1.34-39.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dahlgren C., Stendahl O. Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun. 1983 Feb;39(2):736–741. doi: 10.1128/iai.39.2.736-741.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferrante A., Goh D. H. The effect of anti-malarial drugs on human natural killer cells in vitro. Parasite Immunol. 1984 Nov;6(6):571–580. doi: 10.1111/j.1365-3024.1984.tb00826.x. [DOI] [PubMed] [Google Scholar]
  11. Ferrante A., Rowan-Kelly B., Seow W. K., Thong Y. H. Depression of human polymorphonuclear leucocyte function by anti-malarial drugs. Immunology. 1986 May;58(1):125–130. [PMC free article] [PubMed] [Google Scholar]
  12. Greenwood B. M., Bradley-Moore A. M., Bryceson A. D., Palit A. Immunosuppression in children with malaria. Lancet. 1972 Jan 22;1(7743):169–172. doi: 10.1016/s0140-6736(72)90569-7. [DOI] [PubMed] [Google Scholar]
  13. Gräbner R. Influence of cationic amphiphilic drugs on the phosphatidylcholine hydrolysis by phospholipase A2. Biochem Pharmacol. 1987 Apr 1;36(7):1063–1067. doi: 10.1016/0006-2952(87)90415-1. [DOI] [PubMed] [Google Scholar]
  14. Gustafsson L. L., Walker O., Alván G., Beermann B., Estevez F., Gleisner L., Lindström B., Sjöqvist F. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol. 1983 Apr;15(4):471–479. doi: 10.1111/j.1365-2125.1983.tb01532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanson W. L. Chemotherapy and the immune response in protozoal infections. J Protozool. 1981 Feb;28(1):27–30. doi: 10.1111/j.1550-7408.1981.tb02799.x. [DOI] [PubMed] [Google Scholar]
  16. Hurst N. P., French J. K., Bell A. L., Nuki G., O'Donnell M. L., Betts W. H., Cleland L. G. Differential effects of mepacrine, chloroquine and hydroxychloroquine on superoxide anion generation, phospholipid methylation and arachidonic acid release by human blood monocytes. Biochem Pharmacol. 1986 Sep 15;35(18):3083–3089. doi: 10.1016/0006-2952(86)90390-4. [DOI] [PubMed] [Google Scholar]
  17. Jones C. J., Salisbury R. S., Jayson M. I. The presence of abnormal lysosomes in lymphocytes and neutrophils during chloroquine therapy: a quantitative ultrastructural study. Ann Rheum Dis. 1984 Oct;43(5):710–715. doi: 10.1136/ard.43.5.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kalisz H., Pohlig G., Holzer H. Inhibition of protein phosphorylation by chloroquine. Arch Microbiol. 1987 Apr;147(3):235–239. doi: 10.1007/BF00463481. [DOI] [PubMed] [Google Scholar]
  19. Karbwang J., Bunnag D., Breckenridge A. M., Back D. J. The pharmacokinetics of mefloquine when given alone or in combination with sulphadoxine and pyrimethamine in Thai male and female subjects. Eur J Clin Pharmacol. 1987;32(2):173–177. doi: 10.1007/BF00542191. [DOI] [PubMed] [Google Scholar]
  20. Kharazmi A., Eriksen H. O. Phagocytosis and bactericidal activity of human leucocytes under influence of antimalarial drugs. Trans R Soc Trop Med Hyg. 1986;80(5):758–760. doi: 10.1016/0035-9203(86)90378-0. [DOI] [PubMed] [Google Scholar]
  21. Kharazmi A., Høiby N., Theander T. G. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1987;81(1):49–50. doi: 10.1016/0035-9203(87)90279-3. [DOI] [PubMed] [Google Scholar]
  22. Kharazmi A., Jepsen S. Enhanced inhibition of in vitro multiplication of Plasmodium falciparum by stimulated human polymorphonuclear leucocytes. Clin Exp Immunol. 1984 Aug;57(2):287–292. [PMC free article] [PubMed] [Google Scholar]
  23. Labro M. T., Amit N., Babin-Chevaye C., Hakim J. Synergy between RU 28965 (roxithromycin) and human neutrophils for bactericidal activity in vitro. Antimicrob Agents Chemother. 1986 Jul;30(1):137–142. doi: 10.1128/aac.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Labro M. T., Babin-Chevaye C., Pochet I., Hakim J. Interaction of ceftriaxone with human polymorphonuclear neutrophil function. J Antimicrob Chemother. 1987 Dec;20(6):849–855. doi: 10.1093/jac/20.6.849. [DOI] [PubMed] [Google Scholar]
  25. Lee K. C., Wong M., Spitzer D. Chloroquine as a probe for antigen processing by accessory cells. Transplantation. 1982 Sep;34(3):150–153. doi: 10.1097/00007890-198209000-00008. [DOI] [PubMed] [Google Scholar]
  26. Lind D. E., Levi J. A., Vincent P. C. Amodiaquine-induced agranulocytosis: toxic effect of amodiaquine in bone marrow cultures in vitro. Br Med J. 1973 Feb 24;1(5851):458–460. doi: 10.1136/bmj.1.5851.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Löffler B. M., Bohn E., Hesse B., Kunze H. Effects of antimalarial drugs on phospholipase A and lysophospholipase activities in plasma membrane, mitochondrial, microsomal and cytosolic subcellular fractions of rat liver. Biochim Biophys Acta. 1985 Jul 31;835(3):448–455. doi: 10.1016/0005-2760(85)90114-6. [DOI] [PubMed] [Google Scholar]
  28. Maggs J. L., Kitteringham N. R., Breckenridge A. M., Park B. K. Autoxidative formation of a chemically reactive intermediate from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol. 1987 Jul 1;36(13):2061–2062. doi: 10.1016/0006-2952(87)90130-4. [DOI] [PubMed] [Google Scholar]
  29. Maridonneau-Parini I., Tringale S. M., Tauber A. I. Identification of distinct activation pathways of the human neutrophil NADPH-oxidase. J Immunol. 1986 Nov 1;137(9):2925–2929. [PubMed] [Google Scholar]
  30. Murata T., Sullivan J. A., Sawyer D. W., Mandell G. L. Influence of type and opsonization of ingested particle on intracellular free calcium distribution and superoxide production by human neutrophils. Infect Immun. 1987 Aug;55(8):1784–1791. doi: 10.1128/iai.55.8.1784-1791.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nelson R. D., Quie P. G., Simmons R. L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975 Dec;115(6):1650–1656. [PubMed] [Google Scholar]
  32. Nielsen H., Kharazmi A., Theander T. G. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria. Parasite Immunol. 1986 Nov;8(6):541–550. doi: 10.1111/j.1365-3024.1986.tb00868.x. [DOI] [PubMed] [Google Scholar]
  33. Panus P. C., Jones H. P. Inhibition of neutrophil response by mepacrine. Biochem Pharmacol. 1987 Apr 15;36(8):1281–1284. doi: 10.1016/0006-2952(87)90082-7. [DOI] [PubMed] [Google Scholar]
  34. Perianin A., Labro M. T., Hakim J. Chemokinetic activity of N-formyl-methionyl-leucyl-phenylalanine on human neutrophils, and its modulation by phenylbutazone. Biochem Pharmacol. 1982 Oct 1;31(19):3071–3076. doi: 10.1016/0006-2952(82)90082-x. [DOI] [PubMed] [Google Scholar]
  35. Raghoebar M., van den Berg W. B., van Ginneken C. A. Alteration of chloroquine accumulation in human polymorphonuclear leucocytes under inflammatory conditions. Int J Tissue React. 1987;9(3):255–261. [PubMed] [Google Scholar]
  36. Rhodes E. G., Ball J., Franklin I. M. Amodiaquine induced agranulocytosis: inhibition of colony growth in bone marrow by antimalarial agents. Br Med J (Clin Res Ed) 1986 Mar 15;292(6522):717–718. doi: 10.1136/bmj.292.6522.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Riley L. K., Robertson D. C. Brucellacidal activity of human and bovine polymorphonuclear leukocyte granule extracts against smooth and rough strains of Brucella abortus. Infect Immun. 1984 Oct;46(1):231–236. doi: 10.1128/iai.46.1.231-236.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Salmon D., Vilde J. L., Andrieu B., Simonovic R., Lebras J. Role of immune serum and complement in stimulation of the metabolic burst of human neutrophils by Plasmodium falciparum. Infect Immun. 1986 Mar;51(3):801–806. doi: 10.1128/iai.51.3.801-806.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strickland G. T., Voller A., Pettit L. E., Fleck D. G. Immunodepression associated with concomitant toxoplasma and malarial infections in mice. J Infect Dis. 1972 Jul;126(1):54–60. doi: 10.1093/infdis/126.1.54. [DOI] [PubMed] [Google Scholar]
  40. Tauber A. I. Protein kinase C and the activation of the human neutrophil NADPH-oxidase. Blood. 1987 Mar;69(3):711–720. [PubMed] [Google Scholar]
  41. Theander T. G., Bygbjerg I. C., Andersen B. J., Jepsen S., Kharazmi A., Odum N. Suppression of parasite-specific response in Plasmodium falciparum malaria. A longitudinal study of blood mononuclear cell proliferation and subset composition. Scand J Immunol. 1986 Jul;24(1):73–81. doi: 10.1111/j.1365-3083.1986.tb02071.x. [DOI] [PubMed] [Google Scholar]
  42. Thong Y. H., Ferrante A. Inhibition of mitogen-induced lymphocyte proliferative responses by quinine. Am J Trop Med Hyg. 1978 Mar;27(2 Pt 1):354–356. doi: 10.4269/ajtmh.1978.27.354. [DOI] [PubMed] [Google Scholar]
  43. Thong Y. H., Ferrante A., Rowan-Kelly B., O'Keefe D. E. Effect of mefloquine on the immune response in mice. Trans R Soc Trop Med Hyg. 1979;73(4):388–390. doi: 10.1016/0035-9203(79)90160-3. [DOI] [PubMed] [Google Scholar]
  44. Torres M., De Prost D., Hakim J., Gougerot M. A. Metabolic activity of human polymorphonuclear leucocytes: relation to ingestion rate. Eur J Clin Invest. 1979 Jun;9(3):209–217. doi: 10.1111/j.1365-2362.1979.tb00925.x. [DOI] [PubMed] [Google Scholar]
  45. Trubowitz S., Masek B. Plasmodium falciparum: phagocytosis by polymorphonuclear leukocytes. Science. 1968 Oct 11;162(3850):273–274. doi: 10.1126/science.162.3850.273. [DOI] [PubMed] [Google Scholar]
  46. Vandenbroucke-Grauls C. M., Thijssen R. M., Marcelis J. H., Sharma S. D., Verhoef J. Effects of lysosomotropic amines on human polymorphonuclear leucocyte function. Immunology. 1984 Feb;51(2):319–326. [PMC free article] [PubMed] [Google Scholar]
  47. Watanabe Y., Tawara S., Mine Y., Kikuchi H., Goto S., Kuwahara S. Synergism of cephalosporins at subinhibitory concentrations and polymorphonuclear leukocytes on phagocytic killing of Escherichia coli and its mode of action. J Antibiot (Tokyo) 1986 Feb;39(2):294–303. doi: 10.7164/antibiotics.39.294. [DOI] [PubMed] [Google Scholar]
  48. White N. J., Looareesuwan S., Edwards G., Phillips R. E., Karbwang J., Nicholl D. D., Bunch C., Warrell D. A. Pharmacokinetics of intravenous amodiaquine. Br J Clin Pharmacol. 1987 Feb;23(2):127–135. doi: 10.1111/j.1365-2125.1987.tb03020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Winstanley P. A., Edwards G., Orme M. L., Breckenridge A. M. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol. 1987;33(3):331–333. doi: 10.1007/BF00637573. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES