Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1989 Sep;33(9):1413–1418. doi: 10.1128/aac.33.9.1413

New directions for macrolide antibiotics: structural modifications and in vitro activity.

H A Kirst 1, G D Sides 1
PMCID: PMC172675  PMID: 2684004

Full text

PDF
1415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E. Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob Agents Chemother. 1977 Apr;11(4):669–674. doi: 10.1128/aac.11.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Araujo F. G., Guptill D. R., Remington J. S. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii. Antimicrob Agents Chemother. 1988 May;32(5):755–757. doi: 10.1128/aac.32.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aronoff S. C., Laurent C., Jacobs M. R. In-vitro activity of erythromycin, roxithromycin and CP 62993 against common paediatric pathogens. J Antimicrob Chemother. 1987 Feb;19(2):275–276. doi: 10.1093/jac/19.2.275. [DOI] [PubMed] [Google Scholar]
  4. Barlam T., Neu H. C. In vitro comparison of the activity of RU 28965, a new macrolide, with that of erythromycin against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1984 Apr;25(4):529–531. doi: 10.1128/aac.25.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barry A. L., Fernandes P. B., Jorgensen J. H., Thornsberry C., Hardy D. J., Jones R. N. Variability of clarithromycin and erythromycin susceptibility tests with Haemophilus influenzae in four different broth media and correlation with the standard disk diffusion test. J Clin Microbiol. 1988 Nov;26(11):2415–2420. doi: 10.1128/jcm.26.11.2415-2420.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barry A. L., Thornsberry C., Jones R. N. In vitro activity of a new macrolide, A-56268, compared with that of roxithromycin, erythromycin, and clindamycin. Antimicrob Agents Chemother. 1987 Feb;31(2):343–345. doi: 10.1128/aac.31.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benson C. A., Segreti J., Beaudette F. E., Hines D. W., Goodman L. J., Kaplan R. L., Trenholme G. M. In vitro activity of A-56268 (TE-031), a new macrolide, compared with that of erythromycin and clindamycin against selected gram-positive and gram-negative organisms. Antimicrob Agents Chemother. 1987 Feb;31(2):328–330. doi: 10.1128/aac.31.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bermudez L. E., Young L. S. Activities of amikacin, roxithromycin, and azithromycin alone or in combination with tumor necrosis factor against Mycobacterium avium complex. Antimicrob Agents Chemother. 1988 Aug;32(8):1149–1153. doi: 10.1128/aac.32.8.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bowie W. R., Shaw C. E., Chan D. G., Black W. A. In vitro activity of Ro 15-8074, Ro 19-5247, A-56268, and roxithromycin (RU 28965) against Neisseria gonorrhoeae and Chlamydia trachomatis. Antimicrob Agents Chemother. 1987 Mar;31(3):470–472. doi: 10.1128/aac.31.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bright G. M., Nagel A. A., Bordner J., Desai K. A., Dibrino J. N., Nowakowska J., Vincent L., Watrous R. M., Sciavolino F. C., English A. R. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J Antibiot (Tokyo) 1988 Aug;41(8):1029–1047. doi: 10.7164/antibiotics.41.1029. [DOI] [PubMed] [Google Scholar]
  11. Brittain D. C. Erythromycin. Med Clin North Am. 1987 Nov;71(6):1147–1154. doi: 10.1016/s0025-7125(16)30802-1. [DOI] [PubMed] [Google Scholar]
  12. Casal M., Rodriguez F., Villalba R. In vitro susceptibility of Mycobacterium avium to a new macrolide (RU-28965). Chemotherapy. 1987;33(4):255–258. doi: 10.1159/000238504. [DOI] [PubMed] [Google Scholar]
  13. Chan J., Luft B. J. Activity of roxithromycin (RU 28965), a macrolide, against Toxoplasma gondii infection in mice. Antimicrob Agents Chemother. 1986 Aug;30(2):323–324. doi: 10.1128/aac.30.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chang H. R., Pechère J. C. In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. Antimicrob Agents Chemother. 1988 Apr;32(4):524–529. doi: 10.1128/aac.32.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chang H. R., Rudareanu F. C., Pechère J. C. Activity of A-56268 (TE-031), a new macrolide, against Toxoplasma gondii in mice. J Antimicrob Chemother. 1988 Sep;22(3):359–361. doi: 10.1093/jac/22.3.359. [DOI] [PubMed] [Google Scholar]
  16. Chantot J. F., Bryskier A., Gasc J. C. Antibacterial activity of roxithromycin: a laboratory evaluation. J Antibiot (Tokyo) 1986 May;39(5):660–668. doi: 10.7164/antibiotics.39.660. [DOI] [PubMed] [Google Scholar]
  17. Chin N. X., Neu N. M., Labthavikul P., Saha G., Neu H. C. Activity of A-56268 compared with that of erythromycin and other oral agents against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1987 Mar;31(3):463–466. doi: 10.1128/aac.31.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Concia E., Marone P., Moreo G. C., Sardi C., Braschi R. RV11 (propionyl erythromycin mercaptosuccinate) pharmacokinetics in bronchial secretions. J Int Med Res. 1986;14(3):137–141. doi: 10.1177/030006058601400304. [DOI] [PubMed] [Google Scholar]
  19. Czinn S., Carr H., Aronoff S. Susceptibility of Campylobacter pyloridis to three macrolide antibiotics (erythromycin, roxithromycin [RU 28965], and CP 62,993) and rifampin. Antimicrob Agents Chemother. 1986 Aug;30(2):328–329. doi: 10.1128/aac.30.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Daffos F., Forestier F., Capella-Pavlovsky M., Thulliez P., Aufrant C., Valenti D., Cox W. L. Prenatal management of 746 pregnancies at risk for congenital toxoplasmosis. N Engl J Med. 1988 Feb 4;318(5):271–275. doi: 10.1056/NEJM198802043180502. [DOI] [PubMed] [Google Scholar]
  21. De Bernardi M., Feletti F., Gazzani G., Fregnan G. B. Human pharmacokinetics of erythromycin propionate-N-acetylcysteinate: comparative evaluation with erythromycin stearate and N-acetylcysteine. Int J Clin Pharmacol Ther Toxicol. 1988 Sep;26(9):444–447. [PubMed] [Google Scholar]
  22. Djokić S., Kobrehel G., Lazarevski G. Erythromycin series. XII. Antibacterial in vitro evaluation of 10-dihydro-10-deoxo-11-azaerythromycin A: synthesis and structure-activity relationship of its acyl derivatives. J Antibiot (Tokyo) 1987 Jul;40(7):1006–1015. doi: 10.7164/antibiotics.40.1006. [DOI] [PubMed] [Google Scholar]
  23. Dunkin K. T., Jones S., Howard A. J. The in-vitro activity of CP-62,993 against Haemophilus influenzae, Branhamella catarrhalis, staphylococci and streptococci. J Antimicrob Chemother. 1988 Apr;21(4):405–411. doi: 10.1093/jac/21.4.405. [DOI] [PubMed] [Google Scholar]
  24. Elharrif Z., Mégraud F., Marchand A. M. Susceptibility of Campylobacter jejuni and Campylobacter coli to macrolides and related compounds. Antimicrob Agents Chemother. 1985 Nov;28(5):695–697. doi: 10.1128/aac.28.5.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fernandes P. B., Bailer R., Swanson R., Hanson C. W., McDonald E., Ramer N., Hardy D., Shipkowitz N., Bower R. R., Gade E. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986 Dec;30(6):865–873. doi: 10.1128/aac.30.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fernandes P. B., Baker W. R., Freiberg L. A., Hardy D. J., McDonald E. J. New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance. Antimicrob Agents Chemother. 1989 Jan;33(1):78–81. doi: 10.1128/aac.33.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fernandes P. B., Hardy D., Bailer R., McDonald E., Pintar J., Ramer N., Swanson R., Gade E. Susceptibility testing of macrolide antibiotics against Haemophilus influenzae and correlation of in vitro results with in vivo efficacy in a mouse septicemia model. Antimicrob Agents Chemother. 1987 Aug;31(8):1243–1250. doi: 10.1128/aac.31.8.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Floyd-Reising S., Hindler J. A., Young L. S. In vitro activity of A-56268 (TE-031), a new macrolide antibiotic, compared with that of erythromycin and other antimicrobial agents. Antimicrob Agents Chemother. 1987 Apr;31(4):640–642. doi: 10.1128/aac.31.4.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Franzblau S. G., Hastings R. C. In vitro and in vivo activities of macrolides against Mycobacterium leprae. Antimicrob Agents Chemother. 1988 Dec;32(12):1758–1762. doi: 10.1128/aac.32.12.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gialdroni Grassi G., Alesina R., Bersani C., Ferrara A., Fietta A., Peona V. In vitro activity of flurithromycin, a novel macrolide antibiotic. Chemioterapia. 1986 Jun;5(3):177–184. [PubMed] [Google Scholar]
  31. Goldstein E. J., Citron D. M., Vagvolgyi A. E., Finegold S. M. Susceptibility of bite wound bacteria to seven oral antimicrobial agents, including RU-985, a new erythromycin: considerations in choosing empiric therapy. Antimicrob Agents Chemother. 1986 Apr;29(4):556–559. doi: 10.1128/aac.29.4.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hara K., Suyama N., Yamaguchi K., Kohno S., Saito A. Activity of macrolides against organisms responsible for respiratory infection with emphasis on Mycoplasma and Legionella. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):75–80. doi: 10.1093/jac/20.suppl_b.75. [DOI] [PubMed] [Google Scholar]
  33. Hardy D. J., Hanson C. W., Hensey D. M., Beyer J. M., Fernandes P. B. Susceptibility of Campylobacter pylori to macrolides and fluoroquinolones. J Antimicrob Chemother. 1988 Nov;22(5):631–636. doi: 10.1093/jac/22.5.631. [DOI] [PubMed] [Google Scholar]
  34. Hardy D. J., Hensey D. M., Beyer J. M., Vojtko C., McDonald E. J., Fernandes P. B. Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob Agents Chemother. 1988 Nov;32(11):1710–1719. doi: 10.1128/aac.32.11.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hofflin J. M., Remington J. S. In vivo synergism of roxithromycin (RU 965) and interferon against Toxoplasma gondii. Antimicrob Agents Chemother. 1987 Feb;31(2):346–348. doi: 10.1128/aac.31.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hunt E., Knowles D. J., Shillingford C., Zomaya I. I. Erythromycin A 11,12-methylene acetal. J Antibiot (Tokyo) 1988 Nov;41(11):1644–1648. doi: 10.7164/antibiotics.41.1644. [DOI] [PubMed] [Google Scholar]
  37. Jones R. N., Barry A. L. The antimicrobial activity of A-56268 (TE-031) and roxithromycin (RU965) against Legionella using broth microdilution method. J Antimicrob Chemother. 1987 Jun;19(6):841–842. doi: 10.1093/jac/19.6.841. [DOI] [PubMed] [Google Scholar]
  38. Jones R. N., Barry A. L., Thornsberry C. In vitro evaluation of three new macrolide antimicrobial agents, RU28965, RU29065, and RU29702, and comparisons with other orally administered drugs. Antimicrob Agents Chemother. 1983 Aug;24(2):209–215. doi: 10.1128/aac.24.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Jorgensen J. H., Redding J. S., Howell A. W. In vitro activity of the new macrolide antibiotic roxithromycin (RU 28965) against clinical isolates of Haemophilus influenzae. Antimicrob Agents Chemother. 1986 May;29(5):921–922. doi: 10.1128/aac.29.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kawaharajo K., Sekizawa Y., Inoue M. In vitro and in vivo antibacterial activity of 9,3"-Di-o-acetyl midecamycin (Mom), a new macrolide antibiotic. J Antibiot (Tokyo) 1981 Apr;34(4):436–442. doi: 10.7164/antibiotics.34.436. [DOI] [PubMed] [Google Scholar]
  41. Kurath P., Jones P. H., Egan R. S., Perun T. J. Acid degradation of erythromycin A and erythromycin B. Experientia. 1971 Apr 15;27(4):362–362. doi: 10.1007/BF02137246. [DOI] [PubMed] [Google Scholar]
  42. Lacey R. W., Lord V. L., Howson G. L. In-vitro evaluation of miokamycin: bactericidal activity against streptococci. J Antimicrob Chemother. 1984 Jan;13(1):5–13. doi: 10.1093/jac/13.1.5. [DOI] [PubMed] [Google Scholar]
  43. Liebers D. M., Baltch A. L., Smith R. P., Hammer M. C., Conroy J. V., Shayegani M. Comparative in-vitro activities of A-56268 (TE-031) and erythromycin against 306 clinical isolates. J Antimicrob Chemother. 1988 May;21(5):565–570. doi: 10.1093/jac/21.5.565. [DOI] [PubMed] [Google Scholar]
  44. Massey E. H., Kitchell B. S., Martin L. D., Gerzon K. Antibacterial activity of 9(S)-erythromycylamine-aldehyde condensation products. J Med Chem. 1974 Jan;17(1):105–107. doi: 10.1021/jm00247a018. [DOI] [PubMed] [Google Scholar]
  45. Misu T., Arai S., Furukawa M., Yamamoto Y., Miyazaki T. Effects of rokitamycin and other macrolide antibiotics on Mycoplasma pneumoniae in L cells. Antimicrob Agents Chemother. 1987 Nov;31(11):1843–1845. doi: 10.1128/aac.31.11.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Modai J. The clinical use of macrolides. J Antimicrob Chemother. 1988 Jul;22 (Suppl B):145–153. doi: 10.1093/jac/22.supplement_b.145. [DOI] [PubMed] [Google Scholar]
  47. Morimoto S., Takahashi Y., Watanabe Y., Omura S. Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J Antibiot (Tokyo) 1984 Feb;37(2):187–189. doi: 10.7164/antibiotics.37.187. [DOI] [PubMed] [Google Scholar]
  48. Nelson J. D. The evolving role of erythromycin in medicine. Pediatr Infect Dis. 1986 Jan-Feb;5(1):118–119. [PubMed] [Google Scholar]
  49. Nord C. E., Lindmark A., Persson I. Comparative antimicrobial activity of the new macrolide flurithromycin against respiratory pathogens. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):71–73. doi: 10.1007/BF01962180. [DOI] [PubMed] [Google Scholar]
  50. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ridgway G. L., Mumtaz G., Gabriel G., Oriel J. D. The activity of miokamycin (MOM) against Chlamydia trachomatis and mycoplasmas in vitro. J Antimicrob Chemother. 1983 Nov;12(5):511–514. doi: 10.1093/jac/12.5.511. [DOI] [PubMed] [Google Scholar]
  52. Rylander M., Hallander H. O. In vitro comparison of the activity of doxycycline, tetracycline, erythromycin and a new macrolide, CP 62993, against Mycoplasma pneumoniae, Mycoplasma hominis and Ureaplasma urealyticum. Scand J Infect Dis Suppl. 1988;53:12–17. [PubMed] [Google Scholar]
  53. Sakakibara H., Okekawa O., Fujiwara T., Aizawa M., Omura S. Acyl derivatives of 16-membered macrolides. II. Antibacterial activities and serum levels of 3"-O-acyl derivatives of leucomycin. J Antibiot (Tokyo) 1981 Aug;34(8):1011–1018. doi: 10.7164/antibiotics.34.1011. [DOI] [PubMed] [Google Scholar]
  54. Sakakibara H., Okekawa O., Fujiwara T., Otani M., Omura S. Acyl derivatives of 16-membered macrolides. I. Synthesis and biological properties of 3"-O-propionylleucomycin A5 (TMS-19-Q). J Antibiot (Tokyo) 1981 Aug;34(8):1001–1010. doi: 10.7164/antibiotics.34.1001. [DOI] [PubMed] [Google Scholar]
  55. Sano H., Sunazuka T., Tanaka H., Yamashita K., Okachi R., Omura S. Chemical modification of spiramycins. IV. Synthesis and in vitro and in vivo activities of 3'',4''-diacylates and 3,3'',4''-triacylates of spriamycin I. J Antibiot (Tokyo) 1984 Jul;37(7):760–772. doi: 10.7164/antibiotics.37.760. [DOI] [PubMed] [Google Scholar]
  56. Sanson-Le Pors M. J., Casin I. M., Thebault M. C., Arlet G., Perol Y. In vitro activities of U-63366, a spectinomycin analog; roxithromycin (RU 28965), a new macrolide antibiotic; and five quinolone derivatives against Haemophilus ducreyi. Antimicrob Agents Chemother. 1986 Sep;30(3):512–513. doi: 10.1128/aac.30.3.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Segreti J., Kessler H. A., Kapell K. S., Trenholme G. M. In vitro activity of A-56268 (TE-031) and four other antimicrobial agents against Chlamydia trachomatis. Antimicrob Agents Chemother. 1987 Jan;31(1):100–101. doi: 10.1128/aac.31.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tardrew P. L., Mao J. C., Kenney D. Antibacterial activity of 2'-esters of erythromycin. Appl Microbiol. 1969 Aug;18(2):159–165. doi: 10.1128/am.18.2.159-165.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Toscano L., Fioriello G., Spagnoli R., Cappelletti L., Zanuso G. New fluorinated erythromycins obtained by mutasynthesis. J Antibiot (Tokyo) 1983 Nov;36(11):1439–1450. doi: 10.7164/antibiotics.36.1439. [DOI] [PubMed] [Google Scholar]
  60. Walsh M., Kappus E. W., Quinn T. C. In vitro evaluation of CP-62,993, erythromycin, clindamycin, and tetracycline against Chlamydia trachomatis. Antimicrob Agents Chemother. 1987 May;31(5):811–812. doi: 10.1128/aac.31.5.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Washington J. A., 2nd, Wilson W. R. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (2). Mayo Clin Proc. 1985 Apr;60(4):271–278. doi: 10.1016/s0025-6196(12)60322-x. [DOI] [PubMed] [Google Scholar]
  62. Wilson J., Durodie J., Foulstone M. Hydrolysis of semi-synthetic macrolides by erythromycin esterase from Escherichia coli. J Antimicrob Chemother. 1988 Jul;22(1):84–86. doi: 10.1093/jac/22.1.84. [DOI] [PubMed] [Google Scholar]
  63. Yoshida T., Watanabe T., Shomura T., Someya S., Okamoto R., Ishihara S., Miyauchi K., Kazuno Y. Bacteriological evaluation of midecamycin acetate and its metabolites. Jpn J Antibiot. 1982 Jun;35(6):1462–1474. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES