Skip to main content
Gut logoLink to Gut
. 2001 May;48(5):598–604. doi: 10.1136/gut.48.5.598

Helicobacter pylori infection induced alteration of gene expression in human gastric cells

C Chiou 1, C Chan 1, D Sheu 1, K Chen 1, Y Li 1, E Chan 1
PMCID: PMC1728271  PMID: 11302954

Abstract

BACKGROUNDHelicobacter pylori, a human pathogen responsible for many digestive disorders, induces complex changes in patterns of gene expression in infected tissues. cDNA expression arrays provide a useful tool for studying these complex phenomena.
AIM—To identify genes that showed altered expression after H pylori infection of human gastric cells compared with uninfected controls.
METHODS—The gastric adenocarcinoma cell line AGS was cocultivated with H pylori. Growth of infected cells was determined by trypan blue exclusion assay. Complementary DNA probes derived from H pylori treated and untreated cells were hybridised to two identical Atlas human cDNA expression arrays, and those genes with altered expression levels were identified. A real time quantitative reverse transcription-polymerase chain reaction assay was used to better define expression patterns of these genes in endoscopically gastric mucosal biopsies with and without H pylori infection.
RESULTS—Over 24 hours, coincubation with H pylori inhibited AGS cell growth but did not cause a noticeable degree of cell death. H pylori treatment altered the pattern of gene expression in AGS cells. We identified 21 overexpressed genes and 17 suppressed genes from the cDNA expression arrays. The majority of genes were transcription factors such as c-jun, BTEB2, and ETR101. Other genes were involved in signal transduction pathways, such as MAP kinase, interleukin 5, and insulin-like growth factor. Genes involved in cell cycle regulation and differentiation, such as CDC25B and NM23-H2, were also identified. In patients with H pylori infection (n=20), there was a significant difference for ERCC3, Id-2, and NM23-H2 mRNA levels in infected gastric mucosa compared with uninfected gastric mucosa in patients without peptic diseases (n=20) (ERCC3 4.75 molecules/104 β-actin mRNA molecules v 13.65, p<0.001; Id-2 16.1 v 23.4, p<0.05; NM23-H2 17.5 v 45.5, p<0.001). There was no significant difference between mRNA levels of c-jun and CDC25B in H pylori colonised gastric mucosa and uninfected mucosa.
CONCLUSION—We demonstrated that H pylori infection caused alteration of gene expression in AGS cells. The differential hybridisation technique of Atlas human cDNA expression array is a useful method to identify host genes involved in pathogenic mechanisms in H pylori infection.


Keywords: gastric adenocarcinoma; Helicobacter pylori; cDNA microarray; gene expression; transcription factors; signal transduction pathway

Full Text

The Full Text of this article is available as a PDF (213.3 KB).

Figure 1  .

Figure 1  

Apoptosis fraction of AGS cells at different times after coculturing with H pylori. Synchronised AGS cells were serum deprived for 48 hours (time 0 hours) and fed with fresh medium containing 10% fetal bovine serum (FBS) alone or combined with wild-type H pylori at a bacterial concentration of 107 cells/ml. The experiments were repeated three times.

Figure 2  .

Figure 2  

Gene expression pattern after 24 hours of H pylori cocultured AGS cells appearing on the Atlas human cDNA expression arrays. Upper and lower arrays were hybridised with the cDNA probes derived from untreated and H pylori treated AGS cells, respectively. Some of the differentially expressed genes are marked. Open arrows indicate genes that were overexpressed by H pylori treatment; black arrows indicate downregulated genes. 1, c-jun; 2, BTEB2; 3, MAPk/ERK kinase; 4, α-catenin; 5, fibronectin receptor α subunit; 6, epidermal growth factor; 7, Id-2; 8, p55CDC; 9, nuclease sensitive element DNA binding protein; 10, NM23-H2; and 11, death associated protein 3. Internal controls were: 12, ubiquitin; 13, gapdh; 14, tubulin; 15, β-actin; 16, 23 kDa highly basic protein; and 17, ribosomal protein S9.

Figure 3  .

Figure 3  

Northern blot demonstrating changes in expression of ERCC3, Id-2, NM23-H2, c-jun, and p55CDC at specified time intervals after coculturing AGS cells with H pylori at 107 cells/ml for 24 hours. RNAs were purified at the indicated times, and 10 µg of total cellular RNA was loaded into each lane. The same blot was hybridised to one probe, retrieved, and rehybridised sequentially with the other probes. Three independent experiments were performed and similar result were obtained.

Figure 4  .

Figure 4  

mRNA levels of ERCC3, Id-2, NM23-H2, c-jun, and p55CDC in human gastric mucosal biopsies. mRNA amounts were quantified using a real time quantitative reverse transcription-polymerase chain reaction technique, as described in patients and methods. For each group data were summarised using the box plot technique. The bottom and top symbols indicated minimum and maximal values, respectively (lower or higher than 10% and 90% percentiles); the filled square in the box indicates the mean; and the bottom of the box, median line, and top of the box indicate 25%, 50%, and 75% percentiles, respectively. + and − indicate H pylori infected and uninfected biopsies, respectively.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihara M., Tsuchimoto D., Takizawa H., Azuma A., Wakebe H., Ohmoto Y., Imagawa K., Kikuchi M., Mukaida N., Matsushima K. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun. 1997 Aug;65(8):3218–3224. doi: 10.1128/iai.65.8.3218-3224.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaser M. J. Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends Microbiol. 1993 Oct;1(7):255–260. doi: 10.1016/0966-842x(93)90047-u. [DOI] [PubMed] [Google Scholar]
  3. Bubendorf L., Kononen J., Koivisto P., Schraml P., Moch H., Gasser T. C., Willi N., Mihatsch M. J., Sauter G., Kallioniemi O. P. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 1999 Feb 15;59(4):803–806. [PubMed] [Google Scholar]
  4. Cave T. R., Cave D. R. Helicobacter pylori stimulates pepsin secretion from isolated rabbit gastric glands. Scand J Gastroenterol Suppl. 1991;181:9–14. doi: 10.3109/00365529109093202. [DOI] [PubMed] [Google Scholar]
  5. Censini S., Lange C., Xiang Z., Crabtree J. E., Ghiara P., Borodovsky M., Rappuoli R., Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14648–14653. doi: 10.1073/pnas.93.25.14648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen G., Sordillo E. M., Ramey W. G., Reidy J., Holt P. R., Krajewski S., Reed J. C., Blaser M. J., Moss S. F. Apoptosis in gastric epithelial cells is induced by Helicobacter pylori and accompanied by increased expression of BAK. Biochem Biophys Res Commun. 1997 Oct 20;239(2):626–632. doi: 10.1006/bbrc.1997.7485. [DOI] [PubMed] [Google Scholar]
  7. Chiariello M., Marinissen M. J., Gutkind J. S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol. 2000 Mar;20(5):1747–1758. doi: 10.1128/mcb.20.5.1747-1758.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cover T. L., Dooley C. P., Blaser M. J. Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect Immun. 1990 Mar;58(3):603–610. doi: 10.1128/iai.58.3.603-610.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cover T. L., Halter S. A., Blaser M. J. Characterization of HeLa cell vacuoles induced by Helicobacter pylori broth culture supernatant. Hum Pathol. 1992 Sep;23(9):1004–1010. doi: 10.1016/0046-8177(92)90261-z. [DOI] [PubMed] [Google Scholar]
  10. DeRisi J., Penland L., Brown P. O., Bittner M. L., Meltzer P. S., Ray M., Chen Y., Su Y. A., Trent J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996 Dec;14(4):457–460. doi: 10.1038/ng1296-457. [DOI] [PubMed] [Google Scholar]
  11. Debouck C., Goodfellow P. N. DNA microarrays in drug discovery and development. Nat Genet. 1999 Jan;21(1 Suppl):48–50. doi: 10.1038/4475. [DOI] [PubMed] [Google Scholar]
  12. Drake I. M., Mapstone N. P., Schorah C. J., White K. L., Chalmers D. M., Dixon M. F., Axon A. T. Reactive oxygen species activity and lipid peroxidation in Helicobacter pylori associated gastritis: relation to gastric mucosal ascorbic acid concentrations and effect of H pylori eradication. Gut. 1998 Jun;42(6):768–771. doi: 10.1136/gut.42.6.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibson U. E., Heid C. A., Williams P. M. A novel method for real time quantitative RT-PCR. Genome Res. 1996 Oct;6(10):995–1001. doi: 10.1101/gr.6.10.995. [DOI] [PubMed] [Google Scholar]
  14. Gionchetti P., Vaira D., Campieri M., Holton J., Menegatti M., Belluzzi A., Bertinelli E., Ferretti M., Brignola C., Miglioli M. Enhanced mucosal interleukin-6 and -8 in Helicobacter pylori-positive dyspeptic patients. Am J Gastroenterol. 1994 Jun;89(6):883–887. [PubMed] [Google Scholar]
  15. Hilsenbeck S. G., Friedrichs W. E., Schiff R., O'Connell P., Hansen R. K., Osborne C. K., Fuqua S. A. Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J Natl Cancer Inst. 1999 Mar 3;91(5):453–459. doi: 10.1093/jnci/91.5.453. [DOI] [PubMed] [Google Scholar]
  16. Jehn B. M., Osborne B. A. Gene regulation associated with apoptosis. Crit Rev Eukaryot Gene Expr. 1997;7(1-2):179–193. doi: 10.1615/critreveukargeneexpr.v7.i1-2.100. [DOI] [PubMed] [Google Scholar]
  17. Jones N. L., Shannon P. T., Cutz E., Yeger H., Sherman P. M. Increase in proliferation and apoptosis of gastric epithelial cells early in the natural history of Helicobacter pylori infection. Am J Pathol. 1997 Dec;151(6):1695–1703. [PMC free article] [PubMed] [Google Scholar]
  18. Kallio M., Weinstein J., Daum J. R., Burke D. J., Gorbsky G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol. 1998 Jun 15;141(6):1393–1406. doi: 10.1083/jcb.141.6.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khan J., Simon R., Bittner M., Chen Y., Leighton S. B., Pohida T., Smith P. D., Jiang Y., Gooden G. C., Trent J. M. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 1998 Nov 15;58(22):5009–5013. [PubMed] [Google Scholar]
  20. Kosaka C., Sasaguri T., Ishida A., Ogata J. Cell cycle arrest in the G2 phase induced by phorbol ester and diacylglycerol in vascular endothelial cells. Am J Physiol. 1996 Jan;270(1 Pt 1):C170–C178. doi: 10.1152/ajpcell.1996.270.1.C170. [DOI] [PubMed] [Google Scholar]
  21. Kruse N., Pette M., Toyka K., Rieckmann P. Quantification of cytokine mRNA expression by RT PCR in samples of previously frozen blood. J Immunol Methods. 1997 Dec 29;210(2):195–203. doi: 10.1016/s0022-1759(97)00188-9. [DOI] [PubMed] [Google Scholar]
  22. Lamers C. B. Gastric secretory abnormalities in duodenal ulcer: primary or secondary to Helicobacter pylori infection? Scand J Gastroenterol Suppl. 1992;194:99–103. [PubMed] [Google Scholar]
  23. Lammer C., Wagerer S., Saffrich R., Mertens D., Ansorge W., Hoffmann I. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci. 1998 Aug;111(Pt 16):2445–2453. doi: 10.1242/jcs.111.16.2445. [DOI] [PubMed] [Google Scholar]
  24. Lombardi D., Lacombe M. L., Paggi M. G. nm23: unraveling its biological function in cell differentiation. J Cell Physiol. 2000 Feb;182(2):144–149. doi: 10.1002/(SICI)1097-4652(200002)182:2<144::AID-JCP2>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  25. Martin K. J., Kwan C. P., Sager R. A direct-sequencing-based strategy for identifying and cloning cDNAs from differential display gels. Methods Mol Biol. 1997;85:77–85. doi: 10.1385/0-89603-489-5:77. [DOI] [PubMed] [Google Scholar]
  26. Ogura K., Takahashi M., Maeda S., Ikenoue T., Kanai F., Yoshida H., Shiratori Y., Mori K., Mafune K. I., Omata M. Interleukin-8 production in primary cultures of human gastric epithelial cells induced by Helicobacter pylori. Dig Dis Sci. 1998 Dec;43(12):2738–2743. doi: 10.1023/a:1026671815512. [DOI] [PubMed] [Google Scholar]
  27. Orren D. K., Petersen L. N., Bohr V. A. Persistent DNA damage inhibits S-phase and G2 progression, and results in apoptosis. Mol Biol Cell. 1997 Jun;8(6):1129–1142. doi: 10.1091/mbc.8.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pignatelli B., Bancel B., Estève J., Malaveille C., Calmels S., Correa P., Patricot L. M., Laval M., Lyandrat N., Ohshima H. Inducible nitric oxide synthase, anti-oxidant enzymes and Helicobacter pylori infection in gastritis and gastric precancerous lesions in humans. Eur J Cancer Prev. 1998 Dec;7(6):439–447. doi: 10.1097/00008469-199812000-00003. [DOI] [PubMed] [Google Scholar]
  29. Piotrowski J. Lipopolysaccharide a virulence factor of Helicobacter pylori: effect of antiulcer agents. J Physiol Pharmacol. 1998 Mar;49(1):3–24. [PubMed] [Google Scholar]
  30. Rudi J., Kuck D., Strand S., von Herbay A., Mariani S. M., Krammer P. H., Galle P. R., Stremmel W. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest. 1998 Oct 15;102(8):1506–1514. doi: 10.1172/JCI2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Segal E. D., Falkow S., Tompkins L. S. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1259–1264. doi: 10.1073/pnas.93.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sehgal A., Boynton A. L., Young R. F., Vermeulen S. S., Yonemura K. S., Kohler E. P., Aldape H. C., Simrell C. R., Murphy G. P. Application of the differential hybridization of Atlas Human expression arrays technique in the identification of differentially expressed genes in human glioblastoma multiforme tumor tissue. J Surg Oncol. 1998 Apr;67(4):234–241. doi: 10.1002/(sici)1096-9098(199804)67:4<234::aid-jso5>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  33. Shim C., Zhang W., Rhee C. H., Lee J. H. Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res. 1998 Dec;4(12):3045–3050. [PubMed] [Google Scholar]
  34. Shimada T., Terano A. Chemokine expression in Helicobacter pylori-infected gastric mucosa. J Gastroenterol. 1998 Oct;33(5):613–617. doi: 10.1007/s005350050146. [DOI] [PubMed] [Google Scholar]
  35. Shimizu N., Ohta M., Fujiwara C., Sagara J., Mochizuki N., Oda T., Utiyama H. A gene coding for a zinc finger protein is induced during 12-O-tetradecanoylphorbol-13-acetate-stimulated HL-60 cell differentiation. J Biochem. 1992 Feb;111(2):272–277. doi: 10.1093/oxfordjournals.jbchem.a123748. [DOI] [PubMed] [Google Scholar]
  36. Shimizu N., Ohta M., Fujiwara C., Sagara J., Mochizuki N., Oda T., Utiyama H. Expression of a novel immediate early gene during 12-O-tetradecanoylphorbol-13-acetate-induced macrophagic differentiation of HL-60 cells. J Biol Chem. 1991 Jul 5;266(19):12157–12161. [PubMed] [Google Scholar]
  37. Solnick J. V., Tompkins L. S. Helicobacter pylori and gastroduodenal disease: pathogenesis and host-parasite interaction. Infect Agents Dis. 1992 Dec;1(6):294–309. [PubMed] [Google Scholar]
  38. Taylor G. A., Thompson M. J., Lai W. S., Blackshear P. J. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem. 1995 Jun 2;270(22):13341–13347. doi: 10.1074/jbc.270.22.13341. [DOI] [PubMed] [Google Scholar]
  39. Valle J., Pikkarainen P., Vuoristo M., Sipponen P., Kekki M., Siurala M. Helicobacter pylori and duodenal ulcer. A study of duodenal ulcer patients and their first-degree relatives. Scand J Gastroenterol Suppl. 1991;186:45–51. doi: 10.3109/00365529109103986. [DOI] [PubMed] [Google Scholar]
  40. Wagner S., Beil W., Westermann J., Logan R. P., Bock C. T., Trautwein C., Bleck J. S., Manns M. P. Regulation of gastric epithelial cell growth by Helicobacter pylori: offdence for a major role of apoptosis. Gastroenterology. 1997 Dec;113(6):1836–1847. doi: 10.1016/s0016-5085(97)70003-9. [DOI] [PubMed] [Google Scholar]
  41. Weinstein J., Jacobsen F. W., Hsu-Chen J., Wu T., Baum L. G. A novel mammalian protein, p55CDC, present in dividing cells is associated with protein kinase activity and has homology to the Saccharomyces cerevisiae cell division cycle proteins Cdc20 and Cdc4. Mol Cell Biol. 1994 May;14(5):3350–3363. doi: 10.1128/mcb.14.5.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wong L., Lue M. Y., Chang C. A., Lin Y. L., Chan E. C. Helicobacter pylori induces gene expression in human gastric cells identified by mRNA differential display. Biochem Biophys Res Commun. 1996 Nov 12;228(2):484–488. doi: 10.1006/bbrc.1996.1686. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES