Abstract
OBJECTIVE—To compare the relative efficacy of anteroanterior v anteroposterior electrode pad positions for external cardioversion of atrial fibrillation. DESIGN—Prospective randomised trial. SETTING—Tertiary referral cardiology centre in the United Kingdom. PATIENTS—90 patients undergoing elective cardioversion for atrial fibrillation. INTERVENTIONS—Cardioversion was attempted with self adhesive electrode pads with an area of 106 cm2 placed either in the anteroanterior (AA) or anteroposterior (AP) positions. Initial shock was 100 J which, if unsuccessful, was followed by 200 J, 300 J, and 360 J if required. Peak current and transthoracic impedance were measured. MAIN OUTCOME MEASURES—Cardioversion success rate and energy requirements. RESULTS—Cardioversion was successful in 81% of the patients (73/90). There was no statistically significant difference in the cardioversion success rate (AA 84%, 38/45 patients; AP 78%, 35/45 patients; p = 0.42) or mean (SD) energy requirement for all patients (AA 223 (96.1) J; AP 232 (110) J) or for patients who were successfully cardioverted (AA 197.9 (82.4) J; AP 195.4 (97.2) J; p = 0.9) between the two pad positions. The mean transthoracic impedance (TTI) for the first shock (AA 77.5 (18.4) ohms; AP 73.7 (18.7) ohms; p = 0.34) was not significantly different between the two groups. TTI correlated significantly with body mass index, percentage body fat, and chest AP diameter. There was a progressive decrease in TTI with serial shocks. While aetiology and TTI were the two independent significant predictive factors for energy requirement, duration of atrial fibrillation was the only independent predictor of cardioversion success in a multivariate analysis. CONCLUSIONS—Electrode pad position is not a determinant of cardioversion success rate or energy requirement. Keywords: atrial fibrillation; cardioversion; electrode pad position
Full Text
The Full Text of this article is available as a PDF (109.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aylward P. E., Kieso R., Hite P., Charbonnier F., Kerber R. E. Defibrillator electrode-chest wall coupling agents: influence on transthoracic impedance and shock success. J Am Coll Cardiol. 1985 Sep;6(3):682–686. doi: 10.1016/s0735-1097(85)80131-5. [DOI] [PubMed] [Google Scholar]
- Dahl C. F., Ewy G. A., Ewy M. D., Thomas E. D. Transthoracic impedance to direct current discharge: effect of repeated countershocks. Med Instrum. 1976 May-Jun;10(3):151–154. [PubMed] [Google Scholar]
- Dalzell G. W., Anderson J., Adgey A. A. Factors determining success and energy requirements for cardioversion of atrial fibrillation: revised version. Q J Med. 1991 Jan;78(285):85–95. [PubMed] [Google Scholar]
- Ewy G. A., Hellman D. A., McClung S., Taren D. Influence of ventilation phase on transthoracic impedance and defibrillation effectiveness. Crit Care Med. 1980 Mar;8(3):164–166. doi: 10.1097/00003246-198003000-00015. [DOI] [PubMed] [Google Scholar]
- Ewy G. A. Optimal technique for electrical cardioversion of atrial fibrillation. Circulation. 1992 Nov;86(5):1645–1647. doi: 10.1161/01.cir.86.5.1645. [DOI] [PubMed] [Google Scholar]
- Johnston S. D., Trouton T. G., Wilson C. A review of direct current cardioversions for atrial arrhythmia. Ulster Med J. 1998 May;67(1):19–24. [PMC free article] [PubMed] [Google Scholar]
- Kerber R. E., Grayzel J., Hoyt R., Marcus M., Kennedy J. Transthoracic resistance in human defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle contact pressure. Circulation. 1981 Mar;63(3):676–682. doi: 10.1161/01.cir.63.3.676. [DOI] [PubMed] [Google Scholar]
- Kerber R. E., Jensen S. R., Grayzel J., Kennedy J., Hoyt R. Elective cardioversion: influence of paddle-electrode location and size on success rates and energy requirements. N Engl J Med. 1981 Sep 17;305(12):658–662. doi: 10.1056/NEJM198109173051202. [DOI] [PubMed] [Google Scholar]
- Kerber R. E., Kouba C., Martins J., Kelly K., Low R., Hoyt R., Ferguson D., Bailey L., Bennett P., Charbonnier F. Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks. Circulation. 1984 Aug;70(2):303–308. doi: 10.1161/01.cir.70.2.303. [DOI] [PubMed] [Google Scholar]
- Kerber R. E., Martins J. B., Kienzle M. G., Constantin L., Olshansky B., Hopson R., Charbonnier F. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. Circulation. 1988 May;77(5):1038–1046. doi: 10.1161/01.cir.77.5.1038. [DOI] [PubMed] [Google Scholar]
- Kerber R. E. Transthoracic cardioversion of atrial fibrillation and flutter: standard techniques and new advances. Am J Cardiol. 1996 Oct 17;78(8A):22–26. doi: 10.1016/s0002-9149(96)00562-0. [DOI] [PubMed] [Google Scholar]
- Kerber R. E., Vance S., Schomer S. J., Mariano D. J., Charbonnier F. Transthoracic defibrillation: effect of sternotomy on chest impedance. J Am Coll Cardiol. 1992 Jul;20(1):94–97. doi: 10.1016/0735-1097(92)90143-b. [DOI] [PubMed] [Google Scholar]
- LOWN B., AMARASINGHAM R., NEUMAN J. New method for terminating cardiac arrhythmias. Use of synchronized capacitor discharge. JAMA. 1962 Nov 3;182:548–555. [PubMed] [Google Scholar]
- LOWN B., KLEIGER R., WOLFF G. THE TECHNIQUE OF CARDIOVERSION. Am Heart J. 1964 Feb;67:282–284. doi: 10.1016/0002-8703(64)90382-5. [DOI] [PubMed] [Google Scholar]
- Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J. 1967 Jul;29(4):469–489. doi: 10.1136/hrt.29.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lévy S. Direct current cardioversion of established atrial fibrillation. Clin Cardiol. 1992 Jun;15(6):445–449. doi: 10.1002/clc.4960150611. [DOI] [PubMed] [Google Scholar]
- MORRIS J. J., Jr, KONG Y., NORTH W. C., MCINTOSH H. D. EXPERIENCE WITH "CARDIOVERSION" OF ATRIAL FIBRILLATION AND FLUTTER. Am J Cardiol. 1964 Jul;14:94–100. doi: 10.1016/0002-9149(64)90112-2. [DOI] [PubMed] [Google Scholar]
- McCarthy C., Varghese P. J., Barritt D. W. Prognosis of atrial arrhythmias treated by electrical counter shock therapy. A three-year follow-up. Br Heart J. 1969 Jul;31(4):496–500. doi: 10.1136/hrt.31.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PANTRIDGE J. F., HALMOS P. B. CONVERSION OF ATRIAL FIBRILLATION BY DIRECT CURRENT COUNTER SHOCK. Br Heart J. 1965 Jan;27:128–131. doi: 10.1136/hrt.27.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RABBINO M. D., LIKOFF W., DREIFUS L. S. COMPLICATIONS AND LIMITATIONS OF DIRECT-CURRENT COUNTERSHOCK. JAMA. 1964 Nov 2;190:417–420. doi: 10.1001/jama.1964.03070180015003. [DOI] [PubMed] [Google Scholar]
- Resnekov L., McDonald L. Appraisal of electroconversion in treatment of cardiac dysrhythmias. Br Heart J. 1968 Nov;30(6):786–811. doi: 10.1136/hrt.30.6.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resnekov L., McDonald L. Electroversion of lone atrial fibrillation and flutter including haemodynamic studies at rest and on exercise. Br Heart J. 1971 May;33(3):339–350. doi: 10.1136/hrt.33.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricard P., Lévy S., Trigano J., Paganelli F., Daoud E., Man K. C., Strickberger S. A., Morady F. Prospective assessment of the minimum energy needed for external electrical cardioversion of atrial fibrillation. Am J Cardiol. 1997 Mar 15;79(6):815–816. doi: 10.1016/s0002-9149(96)00879-x. [DOI] [PubMed] [Google Scholar]
- Stoddard M. F., Labovitz A. J., Stevens L. L., Buckingham T. A., Redd R. R., Kennedy H. L. Effects of electrophysiologic studies resulting in electrical countershock or burst pacing on left ventricular systolic and diastolic function. Am Heart J. 1988 Aug;116(2 Pt 1):364–370. doi: 10.1016/0002-8703(88)90607-2. [DOI] [PubMed] [Google Scholar]
- Van Gelder I. C., Crijns H. J., Van Gilst W. H., Verwer R., Lie K. I. Prediction of uneventful cardioversion and maintenance of sinus rhythm from direct-current electrical cardioversion of chronic atrial fibrillation and flutter. Am J Cardiol. 1991 Jul 1;68(1):41–46. doi: 10.1016/0002-9149(91)90707-r. [DOI] [PubMed] [Google Scholar]