Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jan;63(1):51–56. doi: 10.1128/iai.63.1.51-56.1995

CD14 and tissue factor expression by bacterial lipopolysaccharide-stimulated bovine alveolar macrophages in vitro.

Z Yang 1, C D Carter 1, M S Miller 1, P N Bochsler 1
PMCID: PMC172956  PMID: 7528735

Abstract

The membrane-associated CD14 receptor (mCD14) is a monocyte/macrophage differentiation antigen, and it has been demonstrated to serve as a receptor for bacterial lipopolysaccharide (LPS; endotoxin). Binding of LPS to mCD14 has been shown to be associated with LPS-induced macrophage, monocyte, and neutrophil activation in humans. In this report, we describe the presence and function of an mCD14-like receptor on bovine alveolar macrophages (bAM). An immunofluorescence technique and flow cytometric analysis indicated binding of anti-human CD14 monoclonal antibodies (MAb) My4, 3C10, and 60bd to bAM. Binding of anti-CD14 MAb (3C10 and MY4) was reduced over 20% by pretreatment of bAM with phosphatidylinositol-specific phospholipase C (0.5 to 1.0 U/ml), indicating that bovine mCD14 is a glycosyl phosphatidylinositol-anchored protein. In addition, pretreatment of bAM with anti-CD14 MAb decreased binding of 125I-labeled LPS to macrophages, suggesting that bovine mCD14 serves as a receptor for LPS. A cDNA probe based on the human sequence for CD14 was used in Northern (RNA) blot analysis, and hybridization to human monocyte CD14 yielded the expected 1.5-kb band. Hybridization to bovine mRNA yielded a 1.5-kb band plus an unexpected 3.1-kb band. Constitutive expression of bovine CD14 mRNA was observed, and the expression level was modestly elevated in bAM stimulated for 24 h with LPS (1 ng/ml) in the presence of bovine serum. The function and activation of bAM were assessed by quantitation of tissue factor (TF) expression on the cells using an activated factor X-related chromogenic assay and S-2222 substrate. LPS (1 ng/ml)-mediated upregulation of TF expression on bAM was dependent on the presence of bovine serum components, and TF expression was inhibited by anti-CD14 MAb. In addition, TF mRNA levels in LPS-stimulated bAM were decreased by pretreatment of cells with anti-CD14 MAb (MAb 60bd, 10 micrograms/ml).

Full Text

The Full Text of this article is available as a PDF (250.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach R. R. Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 1988;23(4):339–368. doi: 10.3109/10409238809082548. [DOI] [PubMed] [Google Scholar]
  2. Bazil V., Horejsí V., Baudys M., Kristofová H., Strominger J. L., Kostka W., Hilgert I. Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur J Immunol. 1986 Dec;16(12):1583–1589. doi: 10.1002/eji.1830161218. [DOI] [PubMed] [Google Scholar]
  3. Beatty P. G., Ledbetter J. A., Martin P. J., Price T. H., Hansen J. A. Definition of a common leukocyte cell-surface antigen (Lp95-150) associated with diverse cell-mediated immune functions. J Immunol. 1983 Dec;131(6):2913–2918. [PubMed] [Google Scholar]
  4. Bochsler P. N., Doré M., Neilsen N. R., Slauson D. O. A monoclonal-antibody-defined adhesion-related antigen on bovine neutrophils is required for neutrophil aggregation. Inflammation. 1990 Oct;14(5):499–508. doi: 10.1007/BF00914271. [DOI] [PubMed] [Google Scholar]
  5. Bochsler P. N., Maddux J. M., Neilsen N. R., Slauson D. O. Differential binding of bacterial lipopolysaccharide to bovine peripheral-blood leukocytes. Inflammation. 1993 Feb;17(1):47–56. doi: 10.1007/BF00916391. [DOI] [PubMed] [Google Scholar]
  6. Breider M. A., Yang Z. Tissue factor expression in bovine endothelial cells induced by Pasteurella haemolytica lipopolysaccharide and interleukin-1. Vet Pathol. 1994 Jan;31(1):55–60. doi: 10.1177/030098589403100107. [DOI] [PubMed] [Google Scholar]
  7. Car B. D., Slauson D. O., Suyemoto M. M., Doré M., Neilsen N. R. Expression and kinetics of induced procoagulant activity in bovine pulmonary alveolar macrophages. Exp Lung Res. 1991 Sep-Oct;17(5):939–957. doi: 10.3109/01902149109064327. [DOI] [PubMed] [Google Scholar]
  8. Chen T. Y., Lei M. G., Suzuki T., Morrison D. C. Lipopolysaccharide receptors and signal transduction pathways in mononuclear phagocytes. Curr Top Microbiol Immunol. 1992;181:169–188. doi: 10.1007/978-3-642-77377-8_6. [DOI] [PubMed] [Google Scholar]
  9. Cullor J. S. Shock attributable to bacteremia and endotoxemia in cattle: clinical and experimental findings. J Am Vet Med Assoc. 1992 Jun 15;200(12):1894–1902. [PubMed] [Google Scholar]
  10. Dentener M. A., Bazil V., Von Asmuth E. J., Ceska M., Buurman W. A. Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol. 1993 Apr 1;150(7):2885–2891. [PubMed] [Google Scholar]
  11. Ferrero E., Jiao D., Tsuberi B. Z., Tesio L., Rong G. W., Haziot A., Goyert S. M. Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2380–2384. doi: 10.1073/pnas.90.6.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gallay P., Carrel S., Glauser M. P., Barras C., Ulevitch R. J., Tobias P. S., Baumgartner J. D., Heumann D. Purification and characterization of murine lipopolysaccharide-binding protein. Infect Immun. 1993 Feb;61(2):378–383. doi: 10.1128/iai.61.2.378-383.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hailman E., Lichenstein H. S., Wurfel M. M., Miller D. S., Johnson D. A., Kelley M., Busse L. A., Zukowski M. M., Wright S. D. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994 Jan 1;179(1):269–277. doi: 10.1084/jem.179.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Han J., Mathison J. C., Ulevitch R. J., Tobias P. S. Lipopolysaccharide (LPS) binding protein, truncated at Ile-197, binds LPS but does not transfer LPS to CD14. J Biol Chem. 1994 Mar 18;269(11):8172–8175. [PubMed] [Google Scholar]
  16. Haziot A., Chen S., Ferrero E., Low M. G., Silber R., Goyert S. M. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547–552. [PubMed] [Google Scholar]
  17. Haziot A., Rong G. W., Silver J., Goyert S. M. Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol. 1993 Aug 1;151(3):1500–1507. [PubMed] [Google Scholar]
  18. Haziot A., Tsuberi B. Z., Goyert S. M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J Immunol. 1993 Jun 15;150(12):5556–5565. [PubMed] [Google Scholar]
  19. Khemlani L. S., Bochsler P. N., Maddux J. M. Lipopolysaccharide-binding factors are present in bovine serum. Biofactors. 1992 Dec;4(1):33–36. [PubMed] [Google Scholar]
  20. Landmann R., Ludwig C., Obrist R., Obrecht J. P. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem. 1991 Dec;47(4):317–329. doi: 10.1002/jcb.240470406. [DOI] [PubMed] [Google Scholar]
  21. Lay J. C., Slauson D. O., Castleman W. L. Volume-controlled bronchopulmonary lavage of normal and pneumonic calves. Vet Pathol. 1986 Nov;23(6):673–680. doi: 10.1177/030098588602300605. [DOI] [PubMed] [Google Scholar]
  22. Lei M. G., Stimpson S. A., Morrison D. C. Specific endotoxic lipopolysaccharide-binding receptors on murine splenocytes. III. Binding specificity and characterization. J Immunol. 1991 Sep 15;147(6):1925–1932. [PubMed] [Google Scholar]
  23. Lemischka I., Sharp P. A. The sequences of an expressed rat alpha-tubulin gene and a pseudogene with an inserted repetitive element. Nature. 1982 Nov 25;300(5890):330–335. doi: 10.1038/300330a0. [DOI] [PubMed] [Google Scholar]
  24. MacDonald R. J., Swift G. H., Przybyla A. E., Chirgwin J. M. Isolation of RNA using guanidinium salts. Methods Enzymol. 1987;152:219–227. doi: 10.1016/0076-6879(87)52023-7. [DOI] [PubMed] [Google Scholar]
  25. Martin T. R., Mathison J. C., Tobias P. S., Letúrcq D. J., Moriarty A. M., Maunder R. J., Ulevitch R. J. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. J Clin Invest. 1992 Dec;90(6):2209–2219. doi: 10.1172/JCI116106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin T. R., Rubenfeld G., Steinberg K. P., Hudson L. D., Raghu G., Moriarty A. M., Leturcq D. J., Tobias P. S., Ulevitch R. J. Endotoxin, endotoxin-binding protein, and soluble CD14 are present in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Chest. 1994 Mar;105(3 Suppl):55S–56S. doi: 10.1378/chest.105.3.55s. [DOI] [PubMed] [Google Scholar]
  27. Mathison J., Tobias P., Wolfson E., Ulevitch R. Regulatory mechanisms of host responsiveness to endotoxin (lipopolysaccharide). Pathobiology. 1991;59(3):185–188. doi: 10.1159/000163641. [DOI] [PubMed] [Google Scholar]
  28. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  29. Raetz C. R., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991 Sep;5(12):2652–2660. doi: 10.1096/fasebj.5.12.1916089. [DOI] [PubMed] [Google Scholar]
  30. Rietschel E. T., Brade H. Bacterial endotoxins. Sci Am. 1992 Aug;267(2):54–61. doi: 10.1038/scientificamerican0892-54. [DOI] [PubMed] [Google Scholar]
  31. Schumann R. R. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol. 1992 Jan;143(1):11–15. doi: 10.1016/0923-2494(92)80074-u. [DOI] [PubMed] [Google Scholar]
  32. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  33. Shuster D. E., Bosworth B. T., Kehrli M. E., Jr Sequence of the bovine CD18-encoding cDNA: comparison with the human and murine glycoproteins. Gene. 1992 May 15;114(2):267–271. doi: 10.1016/0378-1119(92)90586-e. [DOI] [PubMed] [Google Scholar]
  34. Simmons D. L., Tan S., Tenen D. G., Nicholson-Weller A., Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood. 1989 Jan;73(1):284–289. [PubMed] [Google Scholar]
  35. Takayenoki Y., Muta T., Miyata T., Iwanaga S. cDNA and amino acid sequences of bovine tissue factor. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1145–1150. doi: 10.1016/0006-291x(91)92058-r. [DOI] [PubMed] [Google Scholar]
  36. Taylor F. B., Jr, Chang A., Ruf W., Morrissey J. H., Hinshaw L., Catlett R., Blick K., Edgington T. S. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock. 1991 Mar;33(3):127–134. [PubMed] [Google Scholar]
  37. Ternisien C., Ramani M., Ollivier V., Khechai F., Vu T., Hakim J., de Prost D. Endotoxin-induced tissue factor in human monocytes is dependent upon protein kinase C activation. Thromb Haemost. 1993 Nov 15;70(5):800–806. [PubMed] [Google Scholar]
  38. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  39. Tobias P. S., Soldau K., Ulevitch R. J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem. 1989 Jun 25;264(18):10867–10871. [PubMed] [Google Scholar]
  40. Tobias P. S., Soldau K., Ulevitch R. J. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med. 1986 Sep 1;164(3):777–793. doi: 10.1084/jem.164.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tobias P. S., Ulevitch R. J. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993 Apr;187(3-5):227–232. doi: 10.1016/S0171-2985(11)80341-4. [DOI] [PubMed] [Google Scholar]
  42. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  43. Ulevitch R. J. The preparation and characterization of a radioiodinated bacterial lipopolysaccharide. Immunochemistry. 1978 Mar;15(3):157–164. doi: 10.1016/0161-5890(78)90144-x. [DOI] [PubMed] [Google Scholar]
  44. Vosbeck K., Tobias P., Mueller H., Allen R. A., Arfors K. E., Ulevitch R. J., Sklar L. A. Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. J Leukoc Biol. 1990 Feb;47(2):97–104. doi: 10.1002/jlb.47.2.97. [DOI] [PubMed] [Google Scholar]
  45. Ward P. A., Mulligan M. S. Molecular mechanisms in acute lung injury. Adv Pharmacol. 1993;24:275–292. doi: 10.1016/s1054-3589(08)60940-0. [DOI] [PubMed] [Google Scholar]
  46. Whiteley L. O., Maheswaran S. K., Weiss D. J., Ames T. R., Kannan M. S. Pasteurella haemolytica A1 and bovine respiratory disease: pathogenesis. J Vet Intern Med. 1992 Jan-Feb;6(1):11–22. doi: 10.1111/j.1939-1676.1992.tb00980.x. [DOI] [PubMed] [Google Scholar]
  47. Wollenweber H. W., Morrison D. C. Synthesis and biochemical characterization of a photoactivatable, iodinatable, cleavable bacterial lipopolysaccharide derivative. J Biol Chem. 1985 Dec 5;260(28):15068–15074. [PubMed] [Google Scholar]
  48. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  49. Yang Z., Khemlani L. S., Dean D. F., Carter C. D., Slauson D. O., Bochsler P. N. Serum components enhance bacterial lipopolysaccharide-induced tissue factor expression and tumor necrosis factor-alpha secretion by bovine alveolar macrophages in vitro. J Leukoc Biol. 1994 Apr;55(4):483–488. doi: 10.1002/jlb.55.4.483. [DOI] [PubMed] [Google Scholar]
  50. Ziegler-Heitbrock H. W., Schraut W., Wendelgass P., Ströbel M., Sternsdorf T., Weber C., Aepfelbacher M., Ehlers M., Schütt C., Haas J. G. Distinct patterns of differentiation induced in the monocytic cell line Mono Mac 6. J Leukoc Biol. 1994 Jan;55(1):73–80. doi: 10.1002/jlb.55.1.73. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES