Skip to main content
Heart logoLink to Heart
. 2001 Aug;86(2):212–216. doi: 10.1136/heart.86.2.212

Magnesium causes nitric oxide independent coronary artery vasodilation in humans

H Teragawa 1, M Kato 1, T Yamagata 1, H Matsuura 1, G Kajiyama 1
PMCID: PMC1729866  PMID: 11454846

Abstract

OBJECTIVE—To determine how magnesium affects human coronary arteries and whether endothelium derived nitric oxide (EDNO) is involved in the coronary arterial response to magnesium.
DESIGN—Quantitative coronary angiography and Doppler flow velocity measurements were used to determine the effects of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) on magnesium induced dilation of the epicardial and resistance coronary arteries.
SETTING—Hiroshima University Hospital a tertiary cardiology centre.
PATIENTS—17 patients with angiographically normal coronary arteries.
INTERVENTIONS—Magnesium sulfate (MgSO4) (0.02 mmol/min and 0.2 mmol/min) was infused for two minutes into the left coronary ostium before and after intracoronary infusion of L-NMMA.
MAIN OUTCOME MEASURES—Diameter of the proximal and distal segments of the epicardial coronary arteries and coronary blood flow.
RESULTS—At a dose of 0.02 mmol/min, MgSO4 did not affect the coronary arteries. At a dose of 0.2 mmol/min, MgSO4 caused coronary artery dilation (mean (SEM) proximal diameter 3.00 (0.09) to 3.11 (0.09) mm; distal 1.64 (0.06) to 1.77 (0.07) mm) and increased coronary blood flow (79.3 (7.5) to 101.4 (9.9) ml/min, p < 0.001 v baseline for all). MgSO4 increased the changes in these parameters after the infusion of L-NMMA (p < 0.001 v baseline).
CONCLUSIONS—Magnesium dilates both the epicardial and resistance coronary arteries in humans. Furthermore, the coronary arterial response to magnesium is dose dependent and independent of EDNO.


Keywords: coronary artery; coronary blood flow; magnesium sulfate; nitric oxide

Full Text

The Full Text of this article is available as a PDF (127.2 KB).

Figure 1  .

Figure 1  

Changes in the diameter of the (A) proximal and (B) distal segments of epicardial coronary arteries in response to intracoronary infusion of MgSO4 before and after infusion of NG-monomethyl-L-arginine (L-NMMA). Low MgSO4 was at a dose of 0.02 mmol/min; high MgSO4 was at a dose of 0.2 mmol/min. Vertical bars represent SEM. *p < 0.001 v baseline; †p < 0.01 v low MgSO4; ‡p < 0.05 v low MgSO4.

Figure 2  .

Figure 2  

Changes in coronary blood flow in response to intracoronary infusion of MgSO4 before and after L-NMMA infusion. Vertical bars represent SEM. *p < 0.001 v baseline and †p < 0.01 v low MgSO4.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Altura B. T. Magnesium ions and contraction of vascular smooth muscles: relationship to some vascular diseases. Fed Proc. 1981 Oct;40(12):2672–2679. [PubMed] [Google Scholar]
  2. Altura B. T., Altura B. M. Endothelium-dependent relaxation in coronary arteries requires magnesium ions. Br J Pharmacol. 1987 Jul;91(3):449–451. doi: 10.1111/j.1476-5381.1987.tb11235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ann H. S., Ku D. D. Magnesium inhibits basal release of endothelium-derived relaxing factor in canine coronary arteries. Eur J Pharmacol. 1986 Nov 4;130(3):353–355. doi: 10.1016/0014-2999(86)90294-3. [DOI] [PubMed] [Google Scholar]
  4. Cartier R., Hollmann C., Buluran J., Dagenais F. Effects of modified St Thomas' Hospital solution on coronary artery endothelium dependent relaxation in the isolated rat heart. Can J Cardiol. 1995 Jan;11(1):53–58. [PubMed] [Google Scholar]
  5. Cox D. A., Vita J. A., Treasure C. B., Fish R. D., Alexander R. W., Ganz P., Selwyn A. P. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation. 1989 Sep;80(3):458–465. doi: 10.1161/01.cir.80.3.458. [DOI] [PubMed] [Google Scholar]
  6. Fonseca F. A., Paiva T. B., Silva E. G., Ihara S. S., Kasinski N., Martinez T. L., Filho E. E. Dietary magnesium improves endothelial dependent relaxation of balloon injured arteries in rats. Atherosclerosis. 1998 Aug;139(2):237–242. doi: 10.1016/s0021-9150(98)00069-0. [DOI] [PubMed] [Google Scholar]
  7. Fujita T., Ito Y., Ando K., Noda H., Ogata E. Attenuated vasodilator responses to Mg2+ in young patients with borderline hypertension. Circulation. 1990 Aug;82(2):384–393. doi: 10.1161/01.cir.82.2.384. [DOI] [PubMed] [Google Scholar]
  8. Goto K., Yasue H., Okumura K., Matsuyama K., Kugiyama K., Miyagi H., Higashi T. Magnesium deficiency detected by intravenous loading test in variant angina pectoris. Am J Cardiol. 1990 Mar 15;65(11):709–712. doi: 10.1016/0002-9149(90)91375-g. [DOI] [PubMed] [Google Scholar]
  9. Haigney M. C., Berger R., Schulman S., Gerstenblith G., Tunin C., Silver B., Silverman H. S., Tomaselli G., Calkins H. Tissue magnesium levels and the arrhythmic substrate in humans. J Cardiovasc Electrophysiol. 1997 Sep;8(9):980–986. doi: 10.1111/j.1540-8167.1997.tb00620.x. [DOI] [PubMed] [Google Scholar]
  10. Iseri L. T., French J. H. Magnesium: nature's physiologic calcium blocker. Am Heart J. 1984 Jul;108(1):188–193. doi: 10.1016/0002-8703(84)90572-6. [DOI] [PubMed] [Google Scholar]
  11. Kato M., Shiode N., Yamagata T., Matsuura H., Kajiyama G. Bradykinin induced dilatation of human epicardial and resistance coronary arteries in vivo: effect of inhibition of nitric oxide synthesis. Heart. 1997 Nov;78(5):493–498. doi: 10.1136/hrt.78.5.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kemp P. A., Gardiner S. M., Bennett T., Rubin P. C. Magnesium sulphate reverses the carotid vasoconstriction caused by endothelin-I, angiotensin II and neuropeptide-Y, but not that caused by NG-nitro-L-arginine methyl ester, in conscious rats. Clin Sci (Lond) 1993 Aug;85(2):175–181. doi: 10.1042/cs0850175. [DOI] [PubMed] [Google Scholar]
  13. Kimura T., Yasue H., Sakaino N., Rokutanda M., Jougasaki M., Araki H. Effects of magnesium on the tone of isolated human coronary arteries. Comparison with diltiazem and nitroglycerin. Circulation. 1989 May;79(5):1118–1124. doi: 10.1161/01.cir.79.5.1118. [DOI] [PubMed] [Google Scholar]
  14. Ku D. D., Ann H. S. Differential effects of magnesium on basal and agonist-induced EDRF relaxation in canine coronary arteries. J Cardiovasc Pharmacol. 1991 Jun;17(6):999–1006. doi: 10.1097/00005344-199106000-00021. [DOI] [PubMed] [Google Scholar]
  15. Kugiyama K., Yasue H., Okumura K., Goto K., Minoda K., Miyagi H., Matsuyama K., Kojima A., Koga Y., Takahashi M. Suppression of exercise-induced angina by magnesium sulfate in patients with variant angina. J Am Coll Cardiol. 1988 Nov;12(5):1177–1183. doi: 10.1016/0735-1097(88)92597-1. [DOI] [PubMed] [Google Scholar]
  16. Laurant P., Moussard C., Alber D., Henry J. C., Berthelot A. In vivo and in vitro magnesium effects on aortic prostacyclin generation in DOCA-salt hypertensive rats. Prostaglandins Leukot Essent Fatty Acids. 1992 Nov;47(3):183–186. doi: 10.1016/0952-3278(92)90236-c. [DOI] [PubMed] [Google Scholar]
  17. Levy J. V. Effect of choline magnesium trisalicylate on prostacyclin production by isolated vascular tissue of the rat. Thromb Res. 1983 Jan 15;29(2):149–154. doi: 10.1016/0049-3848(83)90136-6. [DOI] [PubMed] [Google Scholar]
  18. Mallet R. T., Sun J., Fan W. L., Kang Y. H., Bünger R. Magnesium activated adenosine formation in intact perfused heart: predominance of ecto 5'-nucleotidase during hypermagnesemia. Biochim Biophys Acta. 1996 Jun 4;1290(2):165–176. doi: 10.1016/0304-4165(96)00016-5. [DOI] [PubMed] [Google Scholar]
  19. Nadler J. L., Goodson S., Rude R. K. Evidence that prostacyclin mediates the vascular action of magnesium in humans. Hypertension. 1987 Apr;9(4):379–383. doi: 10.1161/01.hyp.9.4.379. [DOI] [PubMed] [Google Scholar]
  20. O'Brien W. F., Williams M. C., Benoit R., Sawai S. K., Knuppel R. A. The effect of magnesium sulfate infusion on systemic and renal prostacyclin production. Prostaglandins. 1990 Nov;40(5):529–538. doi: 10.1016/0090-6980(90)90114-b. [DOI] [PubMed] [Google Scholar]
  21. Parikka H., Toivonen L., Pellinen T., Verkkala K., Järvinen A., Nieminen M. S. The influence of intravenous magnesium sulphate on the occurrence of atrial fibrillation after coronary artery by-pass operation. Eur Heart J. 1993 Feb;14(2):251–258. doi: 10.1093/eurheartj/14.2.251. [DOI] [PubMed] [Google Scholar]
  22. Pearson P. J., Evora P. R., Seccombe J. F., Schaff H. V. Hypomagnesemia inhibits nitric oxide release from coronary endothelium: protective role of magnesium infusion after cardiac operations. Ann Thorac Surg. 1998 Apr;65(4):967–972. doi: 10.1016/s0003-4975(98)00020-4. [DOI] [PubMed] [Google Scholar]
  23. Quyyumi A. A., Dakak N., Andrews N. P., Husain S., Arora S., Gilligan D. M., Panza J. A., Cannon R. O., 3rd Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest. 1995 Apr;95(4):1747–1755. doi: 10.1172/JCI117852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasmussen H. S., Aurup P., Hojberg S., Jensen E. K., McNair P. Magnesium and acute myocardial infarction. Transient hypomagnesemia not induced by renal magnesium loss in patients with acute myocardial infarction. Arch Intern Med. 1986 May;146(5):872–874. doi: 10.1001/archinte.146.5.872. [DOI] [PubMed] [Google Scholar]
  25. Ravn H. B. Pharmacological effects of magnesium on arterial thrombosis--mechanisms of action? Magnes Res. 1999 Sep;12(3):191–199. [PubMed] [Google Scholar]
  26. Ravn H. B., Vissinger H., Kristensen S. D., Wennmalm A., Thygesen K., Husted S. E. Magnesium inhibits platelet activity--an infusion study in healthy volunteers. Thromb Haemost. 1996 Jun;75(6):939–944. [PubMed] [Google Scholar]
  27. Redwood S. R., Bashir Y., Huang J., Leatham E. W., Kaski J. C., Camm A. J. Effect of magnesium sulphate in patients with unstable angina. A double blind, randomized, placebo-controlled study. Eur Heart J. 1997 Aug;18(8):1269–1277. doi: 10.1093/oxfordjournals.eurheartj.a015438. [DOI] [PubMed] [Google Scholar]
  28. Shechter M., Kaplinsky E., Rabinowitz B. The rationale of magnesium supplementation in acute myocardial infarction. A review of the literature. Arch Intern Med. 1992 Nov;152(11):2189–2196. [PubMed] [Google Scholar]
  29. Shiode N., Morishima N., Nakayama K., Yamagata T., Matsuura H., Kajiyama G. Flow-mediated vasodilation of human epicardial coronary arteries: effect of inhibition of nitric oxide synthesis. J Am Coll Cardiol. 1996 Feb;27(2):304–310. doi: 10.1016/0735-1097(95)00465-3. [DOI] [PubMed] [Google Scholar]
  30. Turlapaty P. D., Altura B. M. Extracellular magnesium ions control calcium exchange and content of vascular smooth muscle. Eur J Pharmacol. 1978 Dec 1;52(3-4):421–423. doi: 10.1016/0014-2999(78)90303-5. [DOI] [PubMed] [Google Scholar]
  31. Tzivoni D., Keren A., Cohen A. M., Loebel H., Zahavi I., Chenzbraun A., Stern S. Magnesium therapy for torsades de pointes. Am J Cardiol. 1984 Feb 1;53(4):528–530. doi: 10.1016/0002-9149(84)90025-0. [DOI] [PubMed] [Google Scholar]
  32. Vigorito C., Giordano A., Ferraro P., Acanfora D., De Caprio L., Naddeo C., Rengo F. Hemodynamic effects of magnesium sulfate on the normal human heart. Am J Cardiol. 1991 Jun 15;67(16):1435–1437. doi: 10.1016/0002-9149(91)90478-4. [DOI] [PubMed] [Google Scholar]
  33. Vigorito C., Giordano A., Ferraro P., Supino P., De Pasquale M., Giordano B., Lionetti F., Rengo F. Reduction of pacing-induced myocardial ischemia by intravenous magnesium sulfate. Am J Cardiol. 1995 Feb 1;75(4):280–282. doi: 10.1016/0002-9149(95)80037-s. [DOI] [PubMed] [Google Scholar]
  34. Woods K. L., Fletcher S., Roffe C., Haider Y. Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2) Lancet. 1992 Jun 27;339(8809):1553–1558. doi: 10.1016/0140-6736(92)91828-v. [DOI] [PubMed] [Google Scholar]
  35. Yoshimura M., Oshima T., Matsuura H., Ishida T., Kambe M., Kajiyama G. Extracellular Mg2+ inhibits capacitative Ca2+ entry in vascular smooth muscle cells. Circulation. 1997 Jun 3;95(11):2567–2572. doi: 10.1161/01.cir.95.11.2567. [DOI] [PubMed] [Google Scholar]
  36. Yoshimura M., Oshima T., Matsuura H., Watanabe M., Higashi Y., Ono N., Hiraga H., Kanbe M., Kajiyama G. Assessment of platelet cytosolic concentration of free magnesium in healthy subjects. J Lab Clin Med. 1995 Jun;125(6):743–747. [PubMed] [Google Scholar]
  37. Yusuf S., Teo K., Woods K. Intravenous magnesium in acute myocardial infarction. An effective, safe, simple, and inexpensive intervention. Circulation. 1993 Jun;87(6):2043–2046. doi: 10.1161/01.cir.87.6.2043. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES